package cn.org.hentai.jtt1078.codec.g726;
|
|
import cn.org.hentai.jtt1078.codec.G711Codec;
|
import cn.org.hentai.jtt1078.codec.G711UCodec;
|
|
/** G726_24 encoder and decoder.
|
* <p>
|
* These routines comprise an implementation of the CCITT G.726 24kbps
|
* ADPCM coding algorithm. Essentially, this implementation is identical to
|
* the bit level description except for a few deviations which take advantage
|
* of workstation attributes, such as hardware 2's complement arithmetic.
|
* <p>
|
* This implementation is based on the ANSI-C language reference implementations
|
* of the CCITT (International Telegraph and Telephone Consultative Committee)
|
* G.711, G.721 and G.723 voice compressions, provided by Sun Microsystems, Inc.
|
* <p>
|
* Acknowledgement to Sun Microsystems, Inc. for having released the original
|
* ANSI-C source code to the public domain.
|
*/
|
public class G726_24 extends G726 {
|
|
// ##### C-to-Java conversion: #####
|
// short becomes int
|
// char becomes int
|
// unsigned char becomes int
|
|
|
// *************************** STATIC ***************************
|
|
/*
|
* Maps G726_24 code word to reconstructed scale factor normalized log
|
* magnitude values.
|
*/
|
static /*short*/int[] _dqlntab={-2048, 135, 273, 373, 373, 273, 135, -2048};
|
|
/* Maps G726_24 code word to log of scale factor multiplier. */
|
static /*short*/int[] _witab={-128, 960, 4384, 18624, 18624, 4384, 960, -128};
|
|
/*
|
* Maps G726_24 code words to a set of values whose long and short
|
* term averages are computed and then compared to give an indication
|
* how stationary (steady state) the signal is.
|
*/
|
static /*short*/int[] _fitab={0, 0x200, 0x400, 0xE00, 0xE00, 0x400, 0x200, 0};
|
|
static /*short*/int[] qtab_723_24={8, 218, 331};
|
|
/** Encodes a linear PCM, A-law or u-law input sample and returns its 3-bit code.
|
* Returns -1 if invalid input coding value. */
|
public static int encode(int sl, int in_coding, G726State state) {
|
|
/*short*/int sei, sezi, se, sez; /* ACCUM */
|
/*short*/int d; /* SUBTA */
|
/*short*/int y; /* MIX */
|
/*short*/int sr; /* ADDB */
|
/*short*/int dqsez; /* ADDC */
|
/*short*/int dq, i;
|
|
switch (in_coding) {
|
/* linearize input sample to 14-bit PCM */
|
case AUDIO_ENCODING_ALAW:
|
sl= G711Codec.alaw2linear((byte)sl) >> 2;
|
break;
|
case AUDIO_ENCODING_ULAW:
|
sl= G711UCodec.ulaw2linear((byte)sl) >> 2;
|
break;
|
case AUDIO_ENCODING_LINEAR:
|
sl >>= 2; /* sl of 14-bit dynamic range */
|
break;
|
default:
|
return (-1);
|
}
|
|
sezi=state.predictor_zero();
|
sez=sezi >> 1;
|
sei=sezi+state.predictor_pole();
|
se=sei >> 1; /* se=estimated signal */
|
|
d=sl-se; /* d=estimation diff. */
|
|
/* quantize prediction difference d */
|
y=state.step_size(); /* quantizer step size */
|
i=quantize(d, y, qtab_723_24, 3); /* i=ADPCM code */
|
dq=reconstruct(i & 4, _dqlntab[i], y); /* quantized diff. */
|
|
sr=(dq<0)? se-(dq & 0x3FFF) : se+dq; /* reconstructed signal */
|
|
dqsez=sr+sez-se; /* pole prediction diff. */
|
|
update(3, y, _witab[i], _fitab[i], dq, sr, dqsez, state);
|
|
return (i);
|
}
|
|
|
/** Decodes a 3-bit CCITT G.726 24kbps ADPCM code and returns
|
* the resulting 16-bit linear PCM, A-law or u-law sample value.
|
* -1 is returned if the output coding is unknown. */
|
public static int decode(int i, int out_coding, G726State state) {
|
|
/*short*/int sezi, sei, sez, se; /* ACCUM */
|
/*short*/int y; /* MIX */
|
/*short*/int sr; /* ADDB */
|
/*short*/int dq;
|
/*short*/int dqsez;
|
|
i &= 0x07; /* mask to get proper bits */
|
sezi=state.predictor_zero();
|
sez=sezi >> 1;
|
sei=sezi+state.predictor_pole();
|
se=sei >> 1; /* se=estimated signal */
|
|
y=state.step_size(); /* adaptive quantizer step size */
|
dq=reconstruct(i & 0x04, _dqlntab[i], y); /* unquantize pred diff */
|
|
sr=(dq<0)? (se-(dq & 0x3FFF)) : (se+dq); /* reconst. signal */
|
|
dqsez=sr-se+sez; /* pole prediction diff. */
|
|
update(3, y, _witab[i], _fitab[i], dq, sr, dqsez, state);
|
|
switch (out_coding) {
|
|
case AUDIO_ENCODING_ALAW:
|
return (tandem_adjust_alaw(sr, se, y, i, 4, qtab_723_24));
|
case AUDIO_ENCODING_ULAW:
|
return (tandem_adjust_ulaw(sr, se, y, i, 4, qtab_723_24));
|
case AUDIO_ENCODING_LINEAR:
|
return (sr << 2); /* sr was of 14-bit dynamic range */
|
default:
|
return (-1);
|
}
|
}
|
|
|
/** Encodes the input chunk in_buff of linear PCM, A-law or u-law data and returns
|
* the G726_24 encoded chuck into out_buff. <br>
|
* It returns the actual size of the output data, or -1 in case of unknown
|
* in_coding value. */
|
public static int encode(byte[] in_buff, int in_offset, int in_len, int in_coding, byte[] out_buff, int out_offset, G726State state) {
|
|
if (in_coding==AUDIO_ENCODING_ALAW || in_coding==AUDIO_ENCODING_ULAW) {
|
|
int len_div_8=in_len/8;
|
for (int i=0; i<len_div_8; i++) {
|
int value8=0;
|
int i8=i*8;
|
for (int j=0; j<8; j++) {
|
int in_value=unsignedInt(in_buff[in_offset+i8+j]);
|
int out_value=encode(in_value,in_coding,state);
|
value8+=out_value<<(3*(7-j));
|
}
|
int index=out_offset+i*3;
|
for (int k=0; k<3; k++) {
|
out_buff[index+k]=(byte)(value8>>(8*(2-k)));
|
}
|
}
|
return len_div_8*3;
|
}
|
else
|
if (in_coding==AUDIO_ENCODING_LINEAR) {
|
|
int len_div_16=in_len/16;
|
for (int i=0; i<len_div_16; i++) {
|
int value16=0;
|
int in_index=in_offset+i*16;
|
for (int j=0; j<8; j++) {
|
int j2=j*2;
|
int in_value=signedIntLittleEndian(in_buff[in_index+j2+1],in_buff[in_index+j2]);
|
//int out_value=encode(G711.linear2ulaw(in_value),AUDIO_ENCODING_ULAW,state);
|
int out_value=encode(in_value,in_coding,state);
|
value16+=out_value<<(3*(7-j));
|
}
|
int out_index=out_offset+i*3;
|
for (int k=0; k<3; k++) {
|
out_buff[out_index+k]=(byte)(value16>>(8*(2-k)));
|
}
|
}
|
return len_div_16*3;
|
}
|
else return -1;
|
}
|
|
|
/** Decodes the input chunk in_buff of G726_24 encoded data and returns
|
* the linear PCM, A-law or u-law chunk into out_buff. <br>
|
* It returns the actual size of the output data, or -1 in case of unknown
|
* out_coding value. */
|
public static int decode(byte[] in_buff, int in_offset, int in_len, int out_coding, byte[] out_buff, int out_offset, G726State state) {
|
|
if (out_coding==AUDIO_ENCODING_ALAW || out_coding==AUDIO_ENCODING_ULAW) {
|
|
int len_div_3=in_len/3;
|
for (int i=0; i<len_div_3; i++) {
|
int value8=0;
|
int in_index=in_offset+i*3;
|
for (int j=0; j<3; j++) {
|
value8+=unsignedInt(in_buff[in_index+j])<<(8*(2-j));
|
}
|
int out_index=out_offset+i*8;
|
for (int k=0; k<8; k++) {
|
int in_value=(value8>>(3*(7-k)))&0x7;
|
int out_value=decode(in_value,out_coding,state);
|
out_buff[out_index+k]=(byte)out_value;
|
}
|
}
|
return len_div_3*8;
|
}
|
else
|
if (out_coding==AUDIO_ENCODING_LINEAR) {
|
|
int len_div_3=in_len/3;
|
for (int i=0; i<len_div_3; i++) {
|
int value16=0;
|
int in_index=in_offset+i*3;
|
for (int j=0; j<3; j++) {
|
value16+=unsignedInt(in_buff[in_index+j])<<(8*(2-j));
|
}
|
int out_index=out_offset+i*16;
|
for (int k=0; k<8; k++) {
|
int k2=k*2;
|
int in_value=(value16>>(3*(7-k)))&0x7;
|
//int out_value=G711.ulaw2linear(decode(in_value,AUDIO_ENCODING_ULAW,state));
|
int out_value=decode(in_value,out_coding,state);
|
out_buff[out_index+k2]=(byte)(out_value&0xFF);
|
out_buff[out_index+k2+1]=(byte)(out_value>>8);
|
}
|
}
|
return len_div_3*16;
|
}
|
else return -1;
|
}
|
|
|
// ************************* NON-STATIC *************************
|
|
/** Creates a new G726_24 processor, that can be used to encode from or decode do PCM audio data. */
|
public G726_24() {
|
super(24000);
|
}
|
|
|
/** Encodes a linear PCM, A-law or u-law input sample and returns its 3-bit code.
|
* Returns -1 if invalid input coding value. */
|
public int encode(int sl, int in_coding) {
|
return encode(sl,in_coding,state);
|
}
|
|
|
/** Encodes the input chunk in_buff of linear PCM, A-law or u-law data and returns
|
* the G726_24 encoded chuck into out_buff. <br>
|
* It returns the actual size of the output data, or -1 in case of unknown
|
* in_coding value. */
|
public int encode(byte[] in_buff, int in_offset, int in_len, int in_coding, byte[] out_buff, int out_offset) {
|
return encode(in_buff,in_offset,in_len,in_coding,out_buff,out_offset,state);
|
}
|
|
|
/** Decodes a 3-bit CCITT G.726 24kbps ADPCM code and returns
|
* the resulting 16-bit linear PCM, A-law or u-law sample value.
|
* -1 is returned if the output coding is unknown. */
|
public int decode(int i, int out_coding) {
|
return decode(i,out_coding,state);
|
}
|
|
|
/** Decodes the input chunk in_buff of G726_24 encoded data and returns
|
* the linear PCM, A-law or u-law chunk into out_buff. <br>
|
* It returns the actual size of the output data, or -1 in case of unknown
|
* out_coding value. */
|
public int decode(byte[] in_buff, int in_offset, int in_len, int out_coding, byte[] out_buff, int out_offset) {
|
return decode(in_buff,in_offset,in_len,out_coding,out_buff,out_offset,state);
|
}
|
|
}
|