|
package cn.org.hentai.jtt1078.codec.g726;
|
|
import cn.org.hentai.jtt1078.codec.G711Codec;
|
import cn.org.hentai.jtt1078.codec.G711UCodec;
|
|
/** G726_32 encoder and decoder.
|
* <p>
|
* These routines comprise an implementation of the CCITT G.726 32kbps ADPCM
|
* coding algorithm. Essentially, this implementation is identical to
|
* the bit level description except for a few deviations which
|
* take advantage of work station attributes, such as hardware 2's
|
* complement arithmetic and large memory. Specifically, certain time
|
* consuming operations such as multiplications are replaced
|
* with lookup tables and software 2's complement operations are
|
* replaced with hardware 2's complement.
|
* <p>
|
* The deviation from the bit level specification (lookup tables)
|
* preserves the bit level performance specifications.
|
* <p>
|
* As outlined in the G.726 Recommendation, the algorithm is broken
|
* down into modules. Each section of code below is preceded by
|
* the name of the module which it is implementing.
|
* <p>
|
* This implementation is based on the ANSI-C language reference implementations
|
* of the CCITT (International Telegraph and Telephone Consultative Committee)
|
* G.711, G.721 and G.723 voice compressions, provided by Sun Microsystems, Inc.
|
* <p>
|
* Acknowledgement to Sun Microsystems, Inc. for having released the original
|
* ANSI-C source code to the public domain.
|
*/
|
public class G726_32 extends G726 {
|
|
// ##### C-to-Java conversion: #####
|
// short becomes int
|
// char becomes int
|
// unsigned char becomes int
|
|
|
// *************************** STATIC ***************************
|
|
static /*short*/int[] qtab_721={-124, 80, 178, 246, 300, 349, 400};
|
/*
|
* Maps G726_32 code word to reconstructed scale factor normalized log
|
* magnitude values.
|
*/
|
static /*short*/int[] _dqlntab={-2048, 4, 135, 213, 273, 323, 373, 425, 425, 373, 323, 273, 213, 135, 4, -2048};
|
|
/* Maps G726_32 code word to log of scale factor multiplier. */
|
static /*short*/int[] _witab={-12, 18, 41, 64, 112, 198, 355, 1122, 1122, 355, 198, 112, 64, 41, 18, -12};
|
|
/*
|
* Maps G726_32 code words to a set of values whose long and short
|
* term averages are computed and then compared to give an indication
|
* how stationary (steady state) the signal is.
|
*/
|
static /*short*/int[] _fitab={0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00, 0xE00, 0x600, 0x200, 0x200, 0x200, 0, 0, 0};
|
|
/** Encodes the input vale of linear PCM, A-law or u-law data sl and returns
|
* the resulting code. -1 is returned for unknown input coding value. */
|
public static int encode(int sl, int in_coding, G726State state) {
|
|
/*short*/int sezi, se, sez; /* ACCUM */
|
/*short*/int d; /* SUBTA */
|
/*short*/int sr; /* ADDB */
|
/*short*/int y; /* MIX */
|
/*short*/int dqsez; /* ADDC */
|
/*short*/int dq, i;
|
|
switch (in_coding) {
|
/* linearize input sample to 14-bit PCM */
|
case AUDIO_ENCODING_ALAW:
|
sl= G711Codec.alaw2linear((byte)sl) >> 2;
|
break;
|
case AUDIO_ENCODING_ULAW:
|
sl= G711UCodec.ulaw2linear((byte)sl) >> 2;
|
break;
|
case AUDIO_ENCODING_LINEAR:
|
sl >>= 2; /* 14-bit dynamic range */
|
break;
|
default:
|
return -1;
|
}
|
|
sezi=state.predictor_zero();
|
sez=sezi >> 1;
|
se=(sezi+state.predictor_pole()) >> 1; /* estimated signal */
|
|
d=sl-se; /* estimation difference */
|
|
/* quantize the prediction difference */
|
y=state.step_size(); /* quantizer step size */
|
i=quantize(d, y, qtab_721, 7); /* i=ADPCM code */
|
|
dq=reconstruct(i & 8, _dqlntab[i], y); /* quantized est diff */
|
|
sr=(dq<0)? se-(dq & 0x3FFF) : se+dq; /* reconst. signal */
|
|
dqsez=sr+sez-se; /* pole prediction diff. */
|
|
update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state);
|
|
return i;
|
}
|
|
/** Decodes a 4-bit code of G726_32 encoded data of i and
|
* returns the resulting linear PCM, A-law or u-law value.
|
* return -1 for unknown out_coding value. */
|
public static int decode(int i, int out_coding, G726State state) {
|
|
/*short*/int sezi, sei, sez, se; /* ACCUM */
|
/*short*/int y; /* MIX */
|
/*short*/int sr; /* ADDB */
|
/*short*/int dq;
|
/*short*/int dqsez;
|
|
i &= 0x0f; /* mask to get proper bits */
|
sezi=state.predictor_zero();
|
sez=sezi >> 1;
|
sei=sezi+state.predictor_pole();
|
se=sei >> 1; /* se=estimated signal */
|
|
y=state.step_size(); /* dynamic quantizer step size */
|
|
dq=reconstruct(i & 0x08, _dqlntab[i], y); /* quantized diff. */
|
|
sr=(dq<0)? (se-(dq & 0x3FFF)) : se+dq; /* reconst. signal */
|
|
dqsez=sr-se+sez; /* pole prediction diff. */
|
|
update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state);
|
|
switch (out_coding) {
|
|
case AUDIO_ENCODING_ALAW:
|
return (tandem_adjust_alaw(sr, se, y, i, 8, qtab_721));
|
case AUDIO_ENCODING_ULAW:
|
return (tandem_adjust_ulaw(sr, se, y, i, 8, qtab_721));
|
case AUDIO_ENCODING_LINEAR:
|
return (sr << 2); /* sr was 14-bit dynamic range */
|
default:
|
return -1;
|
}
|
}
|
|
|
/** Encodes the input chunk in_buff of linear PCM, A-law or u-law data and returns
|
* the G726_32 encoded chuck into out_buff. <br>
|
* It returns the actual size of the output data, or -1 in case of unknown
|
* in_coding value. */
|
public static int encode(byte[] in_buff, int in_offset, int in_len, int in_coding, byte[] out_buff, int out_offset, G726State state) {
|
|
if (in_coding==AUDIO_ENCODING_ALAW || in_coding==AUDIO_ENCODING_ULAW) {
|
|
/*
|
for (int i=0; i<in_len; i++) {
|
int in_value=in_buff[in_offset+i];
|
int out_value=encode(in_value,in_coding,state);
|
int i_div_2=i/2;
|
if (i_div_2*2==i)
|
out_buff[out_offset+i_div_2]=(byte)(out_value<<4);
|
else
|
out_buff[out_offset+i_div_2]=(byte)(out_value+unsignedInt(out_buff[out_offset+i_div_2]));
|
}
|
return in_len/2;
|
*/
|
int len_div_2=in_len/2;
|
for (int i=0; i<len_div_2; i++) {
|
int in_index=in_offset+i*2;
|
int in_value1=in_buff[in_index];
|
int in_value2=in_buff[in_index+1];
|
int out_value1=encode(in_value1,in_coding,state);
|
int out_value2=encode(in_value2,in_coding,state);
|
out_buff[out_offset+i]=(byte)((out_value1<<4) + out_value2);
|
}
|
return len_div_2;
|
}
|
else
|
if (in_coding==AUDIO_ENCODING_LINEAR) {
|
|
int len_div_4=in_len/4;
|
for (int i=0; i<len_div_4; i++) {
|
int in_index=in_offset+i*4;
|
int in_value1=signedIntLittleEndian(in_buff[in_index+1],in_buff[in_index+0]);
|
int in_value2=signedIntLittleEndian(in_buff[in_index+3],in_buff[in_index+2]);
|
|
//int out_value1=encode(G711.linear2ulaw(in_value1),AUDIO_ENCODING_ULAW,state);
|
//int out_value2=encode(G711.linear2ulaw(in_value2),AUDIO_ENCODING_ULAW,state);
|
int out_value1=encode(in_value1,in_coding,state);
|
int out_value2=encode(in_value2,in_coding,state);
|
out_buff[out_offset+i]=(byte)((out_value1<<4) + out_value2);
|
}
|
return len_div_4;
|
}
|
else return -1;
|
}
|
|
|
/** Decodes the input chunk in_buff of G726_32 encoded data and returns
|
* the linear PCM, A-law or u-law chunk into out_buff. <br>
|
* It returns the actual size of the output data, or -1 in case of unknown
|
* out_coding value. */
|
public static int decode(byte[] in_buff, int in_offset, int in_len, int out_coding, byte[] out_buff, int out_offset, G726State state) {
|
|
if (out_coding==AUDIO_ENCODING_ALAW || out_coding==AUDIO_ENCODING_ULAW) {
|
|
/*
|
for (int i=0; i<in_len*2; i++) {
|
int in_value=unsignedInt(in_buff[in_offset+i/2]);
|
if ((i/2)*2==i)
|
in_value>>=4;
|
else
|
in_value%=0x10;
|
int out_value=decode(in_value,out_coding,state);
|
out_buff[out_offset+i]=(byte)out_value;
|
}
|
return in_len*2;
|
*/
|
for (int i=0; i<in_len; i++) {
|
int in_value=unsignedInt(in_buff[in_offset+i]);
|
int out_value1=decode(in_value>>4,out_coding,state);
|
int out_value2=decode(in_value&0xF,out_coding,state);
|
int out_index=out_offset+i*2;
|
out_buff[out_index]=(byte)out_value1;
|
out_buff[out_index+1]=(byte)out_value2;
|
}
|
return in_len*2;
|
}
|
else
|
if (out_coding==AUDIO_ENCODING_LINEAR) {
|
|
for (int i=0; i<in_len; i++) {
|
int in_value=unsignedInt(in_buff[in_offset+i]);
|
//int out_value1=G711.ulaw2linear(decode(in_value>>4,AUDIO_ENCODING_ULAW,state));
|
//int out_value2=G711.ulaw2linear(decode(in_value&0xF,AUDIO_ENCODING_ULAW,state));
|
int out_value1=decode(in_value>>4,out_coding,state);
|
int out_value2=decode(in_value&0xF,out_coding,state);
|
int out_index=out_offset+i*4;
|
out_buff[out_index]=(byte)(out_value1&0xFF);
|
out_buff[out_index+1]=(byte)(out_value1>>8);
|
out_buff[out_index+2]=(byte)(out_value2&0xFF);
|
out_buff[out_index+3]=(byte)(out_value2>>8);
|
}
|
return in_len*4;
|
}
|
else return -1;
|
}
|
|
|
// ************************* NON-STATIC *************************
|
|
/** Creates a new G726_32 processor, that can be used to encode from or decode do PCM audio data. */
|
public G726_32() {
|
super(32000);
|
}
|
|
|
/** Encodes the input vale of linear PCM, A-law or u-law data sl and returns
|
* the resulting code. -1 is returned for unknown input coding value. */
|
public int encode(int sl, int in_coding) {
|
return encode(sl,in_coding,state);
|
}
|
|
/** Encodes the input chunk in_buff of linear PCM, A-law or u-law data and returns
|
* the G726_32 encoded chuck into out_buff. <br>
|
* It returns the actual size of the output data, or -1 in case of unknown
|
* in_coding value. */
|
public int encode(byte[] in_buff, int in_offset, int in_len, int in_coding, byte[] out_buff, int out_offset) {
|
return encode(in_buff,in_offset,in_len,in_coding,out_buff,out_offset,state);
|
}
|
|
|
/** Decodes a 4-bit code of G726_32 encoded data of i and
|
* returns the resulting linear PCM, A-law or u-law value.
|
* return -1 for unknown out_coding value. */
|
public int decode(int i, int out_coding) {
|
return decode(i,out_coding,state);
|
}
|
|
|
/** Decodes the input chunk in_buff of G726_32 encoded data and returns
|
* the linear PCM, A-law or u-law chunk into out_buff. <br>
|
* It returns the actual size of the output data, or -1 in case of unknown
|
* out_coding value. */
|
public int decode(byte[] in_buff, int in_offset, int in_len, int out_coding, byte[] out_buff, int out_offset) {
|
return decode(in_buff,in_offset,in_len,out_coding,out_buff,out_offset,state);
|
}
|
|
}
|