package cn.org.hentai.jtt1078.codec.g726;
|
|
import cn.org.hentai.jtt1078.codec.G711Codec;
|
import cn.org.hentai.jtt1078.codec.G711UCodec;
|
|
/** G726_40 encoder and decoder.
|
* <p>
|
* These routines comprise an implementation of the CCITT G.726 40kbps
|
* ADPCM coding algorithm. Essentially, this implementation is identical to
|
* the bit level description except for a few deviations which
|
* take advantage of workstation attributes, such as hardware 2's
|
* complement arithmetic.
|
* <p>
|
* The deviation from the bit level specification (lookup tables),
|
* preserves the bit level performance specifications.
|
* <p>
|
* As outlined in the G.723 Recommendation, the algorithm is broken
|
* down into modules. Each section of code below is preceded by
|
* the name of the module which it is implementing.
|
* <p>
|
* This implementation is based on the ANSI-C language reference implementations
|
* of the CCITT (International Telegraph and Telephone Consultative Committee)
|
* G.711, G.721 and G.723 voice compressions, provided by Sun Microsystems, Inc.
|
* <p>
|
* Acknowledgement to Sun Microsystems, Inc. for having released the original
|
* ANSI-C source code to the public domain.
|
*/
|
public class G726_40 extends G726 {
|
|
// ##### C-to-Java conversion: #####
|
// short becomes int
|
// char becomes int
|
// unsigned char becomes int
|
|
|
// *************************** STATIC ***************************
|
|
/*
|
* Maps G723_40 code word to ructeconstructed scale factor normalized log
|
* magnitude values.
|
*/
|
static /*short*/int[] _dqlntab={-2048, -66, 28, 104, 169, 224, 274, 318, 358, 395, 429, 459, 488, 514, 539, 566, 566, 539, 514, 488, 459, 429, 395, 358, 318, 274, 224, 169, 104, 28, -66, -2048};
|
|
/* Maps G723_40 code word to log of scale factor multiplier. */
|
static /*short*/int[] _witab={448, 448, 768, 1248, 1280, 1312, 1856, 3200, 4512, 5728, 7008, 8960, 11456, 14080, 16928, 22272, 22272, 16928, 14080, 11456, 8960, 7008, 5728, 4512, 3200, 1856, 1312, 1280, 1248, 768, 448, 448};
|
|
/*
|
* Maps G723_40 code words to a set of values whose long and short
|
* term averages are computed and then compared to give an indication
|
* how stationary (steady state) the signal is.
|
*/
|
static /*short*/int[] _fitab={0, 0, 0, 0, 0, 0x200, 0x200, 0x200, 0x200, 0x200, 0x400, 0x600, 0x800, 0xA00, 0xC00, 0xC00, 0xC00, 0xC00, 0xA00, 0x800, 0x600, 0x400, 0x200, 0x200, 0x200, 0x200, 0x200, 0, 0, 0, 0, 0};
|
|
static /*short*/int[] qtab_723_40={-122, -16, 68, 139, 198, 250, 298, 339, 378, 413, 445, 475, 502, 528, 553};
|
|
/** Encodes a 16-bit linear PCM, A-law or u-law input sample and retuens
|
* the resulting 5-bit CCITT G726 40kbps code.
|
* Returns -1 if the input coding value is invalid. */
|
public static int encode(int sl, int in_coding, G726State state) {
|
|
/*short*/int sei, sezi, se, sez; /* ACCUM */
|
/*short*/int d; /* SUBTA */
|
/*short*/int y; /* MIX */
|
/*short*/int sr; /* ADDB */
|
/*short*/int dqsez; /* ADDC */
|
/*short*/int dq, i;
|
|
switch (in_coding) {
|
/* linearize input sample to 14-bit PCM */
|
case AUDIO_ENCODING_ALAW:
|
sl= G711Codec.alaw2linear((byte) sl) >> 2;
|
break;
|
case AUDIO_ENCODING_ULAW:
|
sl= G711UCodec.ulaw2linear((byte)sl) >> 2;
|
break;
|
case AUDIO_ENCODING_LINEAR:
|
sl >>= 2; /* sl of 14-bit dynamic range */
|
break;
|
default:
|
return (-1);
|
}
|
|
sezi=state.predictor_zero();
|
sez=sezi >> 1;
|
sei=sezi+state.predictor_pole();
|
se=sei >> 1; /* se=estimated signal */
|
|
d=sl-se; /* d=estimation difference */
|
|
/* quantize prediction difference */
|
y=state.step_size(); /* adaptive quantizer step size */
|
i=quantize(d, y, qtab_723_40, 15); /* i=ADPCM code */
|
|
dq=reconstruct(i & 0x10, _dqlntab[i], y); /* quantized diff */
|
|
sr=(dq<0)? se-(dq & 0x7FFF) : se+dq; /* reconstructed signal */
|
|
dqsez=sr+sez-se; /* dqsez=pole prediction diff. */
|
|
update(5, y, _witab[i], _fitab[i], dq, sr, dqsez, state);
|
|
return (i);
|
}
|
|
|
/** Decodes a 5-bit CCITT G.726 40kbps code and returns
|
* the resulting 16-bit linear PCM, A-law or u-law sample value.
|
* -1 is returned if the output coding is unknown. */
|
public static int decode(int i, int out_coding, G726State state) {
|
|
/*short*/int sezi, sei, sez, se; /* ACCUM */
|
/*short*/int y, dif; /* MIX */
|
/*short*/int sr; /* ADDB */
|
/*short*/int dq;
|
/*short*/int dqsez;
|
|
i &= 0x1f; /* mask to get proper bits */
|
sezi=state.predictor_zero();
|
sez=sezi >> 1;
|
sei=sezi+state.predictor_pole();
|
se=sei >> 1; /* se=estimated signal */
|
|
y=state.step_size(); /* adaptive quantizer step size */
|
dq=reconstruct(i & 0x10, _dqlntab[i], y); /* estimation diff. */
|
|
sr=(dq<0)? (se-(dq & 0x7FFF)) : (se+dq); /* reconst. signal */
|
|
dqsez=sr-se+sez; /* pole prediction diff. */
|
|
update(5, y, _witab[i], _fitab[i], dq, sr, dqsez, state);
|
|
switch (out_coding) {
|
|
case AUDIO_ENCODING_ALAW:
|
return (tandem_adjust_alaw(sr, se, y, i, 0x10, qtab_723_40));
|
case AUDIO_ENCODING_ULAW:
|
return (tandem_adjust_ulaw(sr, se, y, i, 0x10, qtab_723_40));
|
case AUDIO_ENCODING_LINEAR:
|
return (sr << 2); /* sr was of 14-bit dynamic range */
|
default:
|
return (-1);
|
}
|
}
|
|
|
/** Encodes the input chunk in_buff of linear PCM, A-law or u-law data and returns
|
* the G726_40 encoded chuck into out_buff. <br>
|
* It returns the actual size of the output data, or -1 in case of unknown
|
* in_coding value. */
|
public static int encode(byte[] in_buff, int in_offset, int in_len, int in_coding, byte[] out_buff, int out_offset, G726State state) {
|
|
if (in_coding==AUDIO_ENCODING_ALAW || in_coding==AUDIO_ENCODING_ULAW) {
|
|
int len_div_8=in_len/8;
|
for (int i=0; i<len_div_8; i++) {
|
long value8=0;
|
int in_index=in_offset+i*8;
|
for (int j=0; j<8; j++) {
|
int in_value=unsignedInt(in_buff[in_index+j]);
|
int out_value=encode(in_value,in_coding,state);
|
value8+=((long)out_value)<<(5*(7-j));
|
}
|
int out_index=out_offset+i*5;
|
for (int k=0; k<5; k++) {
|
out_buff[out_index+k]=(byte)(value8>>(8*(4-k)));
|
}
|
}
|
return len_div_8*5;
|
}
|
else
|
if (in_coding==AUDIO_ENCODING_LINEAR) {
|
|
int len_div_16=in_len/16;
|
for (int i=0; i<len_div_16; i++) {
|
long value16=0;
|
int in_index=in_offset+i*16;
|
for (int j=0; j<8; j++) {
|
int j2=j*2;
|
int in_value=signedIntLittleEndian(in_buff[in_index+j2+1],in_buff[in_index+j2]);
|
int out_value=encode(in_value,in_coding,state);
|
value16+=((long)out_value)<<(5*(7-j));
|
}
|
int out_index=out_offset+i*5;
|
for (int k=0; k<5; k++) {
|
out_buff[out_index+k]=(byte)(value16>>(8*(4-k)));
|
}
|
}
|
return len_div_16*5;
|
}
|
else return -1;
|
}
|
|
|
/** Decodes the input chunk in_buff of G726_40 encoded data and returns
|
* the linear PCM, A-law or u-law chunk into out_buff. <br>
|
* It returns the actual size of the output data, or -1 in case of unknown
|
* out_coding value. */
|
public static int decode(byte[] in_buff, int in_offset, int in_len, int out_coding, byte[] out_buff, int out_offset, G726State state) {
|
|
if (out_coding==AUDIO_ENCODING_ALAW || out_coding==AUDIO_ENCODING_ULAW) {
|
|
int len_div_5=in_len/5;
|
for (int i=0; i<len_div_5; i++) {
|
long value8=0;
|
int in_index=in_offset+i*5;
|
for (int j=0; j<5; j++) {
|
value8+=(long)unsignedInt(in_buff[in_index+j])<<(8*(4-j));
|
}
|
int out_index=out_offset+i*8;
|
for (int k=0; k<8; k++) {
|
int in_value=(int)((value8>>(5*(7-k)))&0x1F);
|
int out_value=decode(in_value,out_coding,state);
|
out_buff[out_index+k]=(byte)out_value;
|
}
|
}
|
return len_div_5*8;
|
}
|
else
|
if (out_coding==AUDIO_ENCODING_LINEAR) {
|
|
int len_div_5=in_len/5;
|
for (int i=0; i<len_div_5; i++) {
|
long value16=0;
|
int in_index=in_offset+i*5;
|
for (int j=0; j<5; j++) {
|
value16+=(long)unsignedInt(in_buff[in_index+j])<<(8*(4-j));
|
}
|
int out_index=out_offset+i*16;
|
for (int k=0; k<8; k++) {
|
int k2=k*2;
|
int in_value=(int)((value16>>(5*(7-k)))&0x1F);
|
int out_value=decode(in_value,out_coding,state);
|
out_buff[out_index+k2]=(byte)(out_value&0xFF);
|
out_buff[out_index+k2+1]=(byte)(out_value>>8);
|
}
|
}
|
return len_div_5*16;
|
}
|
else return -1;
|
}
|
|
|
// ************************* NON-STATIC *************************
|
|
/** Creates a new G726_40 processor, that can be used to encode from or decode do PCM audio data. */
|
public G726_40() {
|
super(40000);
|
}
|
|
|
/** Encodes a 16-bit linear PCM, A-law or u-law input sample and retuens
|
* the resulting 5-bit CCITT G.726 40kbps code.
|
* Returns -1 if the input coding value is invalid. */
|
public int encode(int sl, int in_coding) {
|
return encode(sl,in_coding,state);
|
}
|
|
|
/** Encodes the input chunk in_buff of linear PCM, A-law or u-law data and returns
|
* the G726_40 encoded chuck into out_buff. <br>
|
* It returns the actual size of the output data, or -1 in case of unknown
|
* in_coding value. */
|
public int encode(byte[] in_buff, int in_offset, int in_len, int in_coding, byte[] out_buff, int out_offset) {
|
return encode(in_buff,in_offset,in_len,in_coding,out_buff,out_offset,state);
|
}
|
|
|
/** Decodes a 5-bit CCITT G.726 40kbps code and returns
|
* the resulting 16-bit linear PCM, A-law or u-law sample value.
|
* -1 is returned if the output coding is unknown. */
|
public int decode(int i, int out_coding) {
|
return decode(i,out_coding,state);
|
}
|
|
|
/** Decodes the input chunk in_buff of G726_40 encoded data and returns
|
* the linear PCM, A-law or u-law chunk into out_buff. <br>
|
* It returns the actual size of the output data, or -1 in case of unknown
|
* out_coding value. */
|
public int decode(byte[] in_buff, int in_offset, int in_len, int out_coding, byte[] out_buff, int out_offset) {
|
return decode(in_buff,in_offset,in_len,out_coding,out_buff,out_offset,state);
|
}
|
|
|
}
|