/**
|
* 曲线辅助模块
|
*/
|
|
import {
|
create as v2Create,
|
distSquare as v2DistSquare,
|
VectorArray
|
} from './vector';
|
|
const mathPow = Math.pow;
|
const mathSqrt = Math.sqrt;
|
|
const EPSILON = 1e-8;
|
const EPSILON_NUMERIC = 1e-4;
|
|
const THREE_SQRT = mathSqrt(3);
|
const ONE_THIRD = 1 / 3;
|
|
// 临时变量
|
const _v0 = v2Create();
|
const _v1 = v2Create();
|
const _v2 = v2Create();
|
|
function isAroundZero(val: number) {
|
return val > -EPSILON && val < EPSILON;
|
}
|
function isNotAroundZero(val: number) {
|
return val > EPSILON || val < -EPSILON;
|
}
|
/**
|
* 计算三次贝塞尔值
|
*/
|
export function cubicAt(p0: number, p1: number, p2: number, p3: number, t: number): number {
|
const onet = 1 - t;
|
return onet * onet * (onet * p0 + 3 * t * p1)
|
+ t * t * (t * p3 + 3 * onet * p2);
|
}
|
|
/**
|
* 计算三次贝塞尔导数值
|
*/
|
export function cubicDerivativeAt(p0: number, p1: number, p2: number, p3: number, t: number): number {
|
const onet = 1 - t;
|
return 3 * (
|
((p1 - p0) * onet + 2 * (p2 - p1) * t) * onet
|
+ (p3 - p2) * t * t
|
);
|
}
|
|
/**
|
* 计算三次贝塞尔方程根,使用盛金公式
|
*/
|
export function cubicRootAt(p0: number, p1: number, p2: number, p3: number, val: number, roots: number[]): number {
|
// Evaluate roots of cubic functions
|
const a = p3 + 3 * (p1 - p2) - p0;
|
const b = 3 * (p2 - p1 * 2 + p0);
|
const c = 3 * (p1 - p0);
|
const d = p0 - val;
|
|
const A = b * b - 3 * a * c;
|
const B = b * c - 9 * a * d;
|
const C = c * c - 3 * b * d;
|
|
let n = 0;
|
|
if (isAroundZero(A) && isAroundZero(B)) {
|
if (isAroundZero(b)) {
|
roots[0] = 0;
|
}
|
else {
|
const t1 = -c / b; //t1, t2, t3, b is not zero
|
if (t1 >= 0 && t1 <= 1) {
|
roots[n++] = t1;
|
}
|
}
|
}
|
else {
|
const disc = B * B - 4 * A * C;
|
|
if (isAroundZero(disc)) {
|
const K = B / A;
|
const t1 = -b / a + K; // t1, a is not zero
|
const t2 = -K / 2; // t2, t3
|
if (t1 >= 0 && t1 <= 1) {
|
roots[n++] = t1;
|
}
|
if (t2 >= 0 && t2 <= 1) {
|
roots[n++] = t2;
|
}
|
}
|
else if (disc > 0) {
|
const discSqrt = mathSqrt(disc);
|
let Y1 = A * b + 1.5 * a * (-B + discSqrt);
|
let Y2 = A * b + 1.5 * a * (-B - discSqrt);
|
if (Y1 < 0) {
|
Y1 = -mathPow(-Y1, ONE_THIRD);
|
}
|
else {
|
Y1 = mathPow(Y1, ONE_THIRD);
|
}
|
if (Y2 < 0) {
|
Y2 = -mathPow(-Y2, ONE_THIRD);
|
}
|
else {
|
Y2 = mathPow(Y2, ONE_THIRD);
|
}
|
const t1 = (-b - (Y1 + Y2)) / (3 * a);
|
if (t1 >= 0 && t1 <= 1) {
|
roots[n++] = t1;
|
}
|
}
|
else {
|
const T = (2 * A * b - 3 * a * B) / (2 * mathSqrt(A * A * A));
|
const theta = Math.acos(T) / 3;
|
const ASqrt = mathSqrt(A);
|
const tmp = Math.cos(theta);
|
|
const t1 = (-b - 2 * ASqrt * tmp) / (3 * a);
|
const t2 = (-b + ASqrt * (tmp + THREE_SQRT * Math.sin(theta))) / (3 * a);
|
const t3 = (-b + ASqrt * (tmp - THREE_SQRT * Math.sin(theta))) / (3 * a);
|
if (t1 >= 0 && t1 <= 1) {
|
roots[n++] = t1;
|
}
|
if (t2 >= 0 && t2 <= 1) {
|
roots[n++] = t2;
|
}
|
if (t3 >= 0 && t3 <= 1) {
|
roots[n++] = t3;
|
}
|
}
|
}
|
return n;
|
}
|
|
/**
|
* 计算三次贝塞尔方程极限值的位置
|
* @return 有效数目
|
*/
|
export function cubicExtrema(p0: number, p1: number, p2: number, p3: number, extrema: number[]): number {
|
const b = 6 * p2 - 12 * p1 + 6 * p0;
|
const a = 9 * p1 + 3 * p3 - 3 * p0 - 9 * p2;
|
const c = 3 * p1 - 3 * p0;
|
|
let n = 0;
|
if (isAroundZero(a)) {
|
if (isNotAroundZero(b)) {
|
const t1 = -c / b;
|
if (t1 >= 0 && t1 <= 1) {
|
extrema[n++] = t1;
|
}
|
}
|
}
|
else {
|
const disc = b * b - 4 * a * c;
|
if (isAroundZero(disc)) {
|
extrema[0] = -b / (2 * a);
|
}
|
else if (disc > 0) {
|
const discSqrt = mathSqrt(disc);
|
const t1 = (-b + discSqrt) / (2 * a);
|
const t2 = (-b - discSqrt) / (2 * a);
|
if (t1 >= 0 && t1 <= 1) {
|
extrema[n++] = t1;
|
}
|
if (t2 >= 0 && t2 <= 1) {
|
extrema[n++] = t2;
|
}
|
}
|
}
|
return n;
|
}
|
|
/**
|
* 细分三次贝塞尔曲线
|
*/
|
export function cubicSubdivide(p0: number, p1: number, p2: number, p3: number, t: number, out: number[]) {
|
const p01 = (p1 - p0) * t + p0;
|
const p12 = (p2 - p1) * t + p1;
|
const p23 = (p3 - p2) * t + p2;
|
|
const p012 = (p12 - p01) * t + p01;
|
const p123 = (p23 - p12) * t + p12;
|
|
const p0123 = (p123 - p012) * t + p012;
|
// Seg0
|
out[0] = p0;
|
out[1] = p01;
|
out[2] = p012;
|
out[3] = p0123;
|
// Seg1
|
out[4] = p0123;
|
out[5] = p123;
|
out[6] = p23;
|
out[7] = p3;
|
}
|
|
/**
|
* 投射点到三次贝塞尔曲线上,返回投射距离。
|
* 投射点有可能会有一个或者多个,这里只返回其中距离最短的一个。
|
*/
|
export function cubicProjectPoint(
|
x0: number, y0: number, x1: number, y1: number, x2: number, y2: number, x3: number, y3: number,
|
x: number, y: number, out: VectorArray
|
): number {
|
// http://pomax.github.io/bezierinfo/#projections
|
let t;
|
let interval = 0.005;
|
let d = Infinity;
|
let prev;
|
let next;
|
let d1;
|
let d2;
|
|
_v0[0] = x;
|
_v0[1] = y;
|
|
// 先粗略估计一下可能的最小距离的 t 值
|
// PENDING
|
for (let _t = 0; _t < 1; _t += 0.05) {
|
_v1[0] = cubicAt(x0, x1, x2, x3, _t);
|
_v1[1] = cubicAt(y0, y1, y2, y3, _t);
|
d1 = v2DistSquare(_v0, _v1);
|
if (d1 < d) {
|
t = _t;
|
d = d1;
|
}
|
}
|
d = Infinity;
|
|
// At most 32 iteration
|
for (let i = 0; i < 32; i++) {
|
if (interval < EPSILON_NUMERIC) {
|
break;
|
}
|
prev = t - interval;
|
next = t + interval;
|
// t - interval
|
_v1[0] = cubicAt(x0, x1, x2, x3, prev);
|
_v1[1] = cubicAt(y0, y1, y2, y3, prev);
|
|
d1 = v2DistSquare(_v1, _v0);
|
|
if (prev >= 0 && d1 < d) {
|
t = prev;
|
d = d1;
|
}
|
else {
|
// t + interval
|
_v2[0] = cubicAt(x0, x1, x2, x3, next);
|
_v2[1] = cubicAt(y0, y1, y2, y3, next);
|
d2 = v2DistSquare(_v2, _v0);
|
|
if (next <= 1 && d2 < d) {
|
t = next;
|
d = d2;
|
}
|
else {
|
interval *= 0.5;
|
}
|
}
|
}
|
// t
|
if (out) {
|
out[0] = cubicAt(x0, x1, x2, x3, t);
|
out[1] = cubicAt(y0, y1, y2, y3, t);
|
}
|
// console.log(interval, i);
|
return mathSqrt(d);
|
}
|
|
/**
|
* 计算三次贝塞尔曲线长度
|
*/
|
export function cubicLength(
|
x0: number, y0: number, x1: number, y1: number, x2: number, y2: number, x3: number, y3: number,
|
iteration: number
|
) {
|
let px = x0;
|
let py = y0;
|
|
let d = 0;
|
|
const step = 1 / iteration;
|
|
for (let i = 1; i <= iteration; i++) {
|
let t = i * step;
|
const x = cubicAt(x0, x1, x2, x3, t);
|
const y = cubicAt(y0, y1, y2, y3, t);
|
|
const dx = x - px;
|
const dy = y - py;
|
|
d += Math.sqrt(dx * dx + dy * dy);
|
|
px = x;
|
py = y;
|
}
|
|
return d;
|
}
|
|
/**
|
* 计算二次方贝塞尔值
|
*/
|
export function quadraticAt(p0: number, p1: number, p2: number, t: number): number {
|
const onet = 1 - t;
|
return onet * (onet * p0 + 2 * t * p1) + t * t * p2;
|
}
|
|
/**
|
* 计算二次方贝塞尔导数值
|
*/
|
export function quadraticDerivativeAt(p0: number, p1: number, p2: number, t: number): number {
|
return 2 * ((1 - t) * (p1 - p0) + t * (p2 - p1));
|
}
|
|
/**
|
* 计算二次方贝塞尔方程根
|
* @return 有效根数目
|
*/
|
export function quadraticRootAt(p0: number, p1: number, p2: number, val: number, roots: number[]): number {
|
const a = p0 - 2 * p1 + p2;
|
const b = 2 * (p1 - p0);
|
const c = p0 - val;
|
|
let n = 0;
|
if (isAroundZero(a)) {
|
if (isNotAroundZero(b)) {
|
const t1 = -c / b;
|
if (t1 >= 0 && t1 <= 1) {
|
roots[n++] = t1;
|
}
|
}
|
}
|
else {
|
const disc = b * b - 4 * a * c;
|
if (isAroundZero(disc)) {
|
const t1 = -b / (2 * a);
|
if (t1 >= 0 && t1 <= 1) {
|
roots[n++] = t1;
|
}
|
}
|
else if (disc > 0) {
|
const discSqrt = mathSqrt(disc);
|
const t1 = (-b + discSqrt) / (2 * a);
|
const t2 = (-b - discSqrt) / (2 * a);
|
if (t1 >= 0 && t1 <= 1) {
|
roots[n++] = t1;
|
}
|
if (t2 >= 0 && t2 <= 1) {
|
roots[n++] = t2;
|
}
|
}
|
}
|
return n;
|
}
|
|
/**
|
* 计算二次贝塞尔方程极限值
|
*/
|
export function quadraticExtremum(p0: number, p1: number, p2: number): number {
|
const divider = p0 + p2 - 2 * p1;
|
if (divider === 0) {
|
// p1 is center of p0 and p2
|
return 0.5;
|
}
|
else {
|
return (p0 - p1) / divider;
|
}
|
}
|
|
/**
|
* 细分二次贝塞尔曲线
|
*/
|
export function quadraticSubdivide(p0: number, p1: number, p2: number, t: number, out: number[]) {
|
const p01 = (p1 - p0) * t + p0;
|
const p12 = (p2 - p1) * t + p1;
|
const p012 = (p12 - p01) * t + p01;
|
|
// Seg0
|
out[0] = p0;
|
out[1] = p01;
|
out[2] = p012;
|
|
// Seg1
|
out[3] = p012;
|
out[4] = p12;
|
out[5] = p2;
|
}
|
|
/**
|
* 投射点到二次贝塞尔曲线上,返回投射距离。
|
* 投射点有可能会有一个或者多个,这里只返回其中距离最短的一个。
|
* @param {number} x0
|
* @param {number} y0
|
* @param {number} x1
|
* @param {number} y1
|
* @param {number} x2
|
* @param {number} y2
|
* @param {number} x
|
* @param {number} y
|
* @param {Array.<number>} out 投射点
|
* @return {number}
|
*/
|
export function quadraticProjectPoint(
|
x0: number, y0: number, x1: number, y1: number, x2: number, y2: number,
|
x: number, y: number, out: VectorArray
|
): number {
|
// http://pomax.github.io/bezierinfo/#projections
|
let t: number;
|
let interval = 0.005;
|
let d = Infinity;
|
|
_v0[0] = x;
|
_v0[1] = y;
|
|
// 先粗略估计一下可能的最小距离的 t 值
|
// PENDING
|
for (let _t = 0; _t < 1; _t += 0.05) {
|
_v1[0] = quadraticAt(x0, x1, x2, _t);
|
_v1[1] = quadraticAt(y0, y1, y2, _t);
|
const d1 = v2DistSquare(_v0, _v1);
|
if (d1 < d) {
|
t = _t;
|
d = d1;
|
}
|
}
|
d = Infinity;
|
|
// At most 32 iteration
|
for (let i = 0; i < 32; i++) {
|
if (interval < EPSILON_NUMERIC) {
|
break;
|
}
|
const prev = t - interval;
|
const next = t + interval;
|
// t - interval
|
_v1[0] = quadraticAt(x0, x1, x2, prev);
|
_v1[1] = quadraticAt(y0, y1, y2, prev);
|
|
const d1 = v2DistSquare(_v1, _v0);
|
|
if (prev >= 0 && d1 < d) {
|
t = prev;
|
d = d1;
|
}
|
else {
|
// t + interval
|
_v2[0] = quadraticAt(x0, x1, x2, next);
|
_v2[1] = quadraticAt(y0, y1, y2, next);
|
const d2 = v2DistSquare(_v2, _v0);
|
if (next <= 1 && d2 < d) {
|
t = next;
|
d = d2;
|
}
|
else {
|
interval *= 0.5;
|
}
|
}
|
}
|
// t
|
if (out) {
|
out[0] = quadraticAt(x0, x1, x2, t);
|
out[1] = quadraticAt(y0, y1, y2, t);
|
}
|
// console.log(interval, i);
|
return mathSqrt(d);
|
}
|
|
/**
|
* 计算二次贝塞尔曲线长度
|
*/
|
export function quadraticLength(
|
x0: number, y0: number, x1: number, y1: number, x2: number, y2: number,
|
iteration: number
|
) {
|
let px = x0;
|
let py = y0;
|
|
let d = 0;
|
|
const step = 1 / iteration;
|
|
for (let i = 1; i <= iteration; i++) {
|
let t = i * step;
|
const x = quadraticAt(x0, x1, x2, t);
|
const y = quadraticAt(y0, y1, y2, t);
|
|
const dx = x - px;
|
const dy = y - py;
|
|
d += Math.sqrt(dx * dx + dy * dy);
|
|
px = x;
|
py = y;
|
}
|
|
return d;
|
}
|