| /** | 
|  * A Javascript implementation of AES Cipher Suites for TLS. | 
|  * | 
|  * @author Dave Longley | 
|  * | 
|  * Copyright (c) 2009-2015 Digital Bazaar, Inc. | 
|  * | 
|  */ | 
| var forge = require('./forge'); | 
| require('./aes'); | 
| require('./tls'); | 
|   | 
| var tls = module.exports = forge.tls; | 
|   | 
| /** | 
|  * Supported cipher suites. | 
|  */ | 
| tls.CipherSuites['TLS_RSA_WITH_AES_128_CBC_SHA'] = { | 
|   id: [0x00, 0x2f], | 
|   name: 'TLS_RSA_WITH_AES_128_CBC_SHA', | 
|   initSecurityParameters: function(sp) { | 
|     sp.bulk_cipher_algorithm = tls.BulkCipherAlgorithm.aes; | 
|     sp.cipher_type = tls.CipherType.block; | 
|     sp.enc_key_length = 16; | 
|     sp.block_length = 16; | 
|     sp.fixed_iv_length = 16; | 
|     sp.record_iv_length = 16; | 
|     sp.mac_algorithm = tls.MACAlgorithm.hmac_sha1; | 
|     sp.mac_length = 20; | 
|     sp.mac_key_length = 20; | 
|   }, | 
|   initConnectionState: initConnectionState | 
| }; | 
| tls.CipherSuites['TLS_RSA_WITH_AES_256_CBC_SHA'] = { | 
|   id: [0x00, 0x35], | 
|   name: 'TLS_RSA_WITH_AES_256_CBC_SHA', | 
|   initSecurityParameters: function(sp) { | 
|     sp.bulk_cipher_algorithm = tls.BulkCipherAlgorithm.aes; | 
|     sp.cipher_type = tls.CipherType.block; | 
|     sp.enc_key_length = 32; | 
|     sp.block_length = 16; | 
|     sp.fixed_iv_length = 16; | 
|     sp.record_iv_length = 16; | 
|     sp.mac_algorithm = tls.MACAlgorithm.hmac_sha1; | 
|     sp.mac_length = 20; | 
|     sp.mac_key_length = 20; | 
|   }, | 
|   initConnectionState: initConnectionState | 
| }; | 
|   | 
| function initConnectionState(state, c, sp) { | 
|   var client = (c.entity === forge.tls.ConnectionEnd.client); | 
|   | 
|   // cipher setup | 
|   state.read.cipherState = { | 
|     init: false, | 
|     cipher: forge.cipher.createDecipher('AES-CBC', client ? | 
|       sp.keys.server_write_key : sp.keys.client_write_key), | 
|     iv: client ? sp.keys.server_write_IV : sp.keys.client_write_IV | 
|   }; | 
|   state.write.cipherState = { | 
|     init: false, | 
|     cipher: forge.cipher.createCipher('AES-CBC', client ? | 
|       sp.keys.client_write_key : sp.keys.server_write_key), | 
|     iv: client ? sp.keys.client_write_IV : sp.keys.server_write_IV | 
|   }; | 
|   state.read.cipherFunction = decrypt_aes_cbc_sha1; | 
|   state.write.cipherFunction = encrypt_aes_cbc_sha1; | 
|   | 
|   // MAC setup | 
|   state.read.macLength = state.write.macLength = sp.mac_length; | 
|   state.read.macFunction = state.write.macFunction = tls.hmac_sha1; | 
| } | 
|   | 
| /** | 
|  * Encrypts the TLSCompressed record into a TLSCipherText record using AES | 
|  * in CBC mode. | 
|  * | 
|  * @param record the TLSCompressed record to encrypt. | 
|  * @param s the ConnectionState to use. | 
|  * | 
|  * @return true on success, false on failure. | 
|  */ | 
| function encrypt_aes_cbc_sha1(record, s) { | 
|   var rval = false; | 
|   | 
|   // append MAC to fragment, update sequence number | 
|   var mac = s.macFunction(s.macKey, s.sequenceNumber, record); | 
|   record.fragment.putBytes(mac); | 
|   s.updateSequenceNumber(); | 
|   | 
|   // TLS 1.1+ use an explicit IV every time to protect against CBC attacks | 
|   var iv; | 
|   if(record.version.minor === tls.Versions.TLS_1_0.minor) { | 
|     // use the pre-generated IV when initializing for TLS 1.0, otherwise use | 
|     // the residue from the previous encryption | 
|     iv = s.cipherState.init ? null : s.cipherState.iv; | 
|   } else { | 
|     iv = forge.random.getBytesSync(16); | 
|   } | 
|   | 
|   s.cipherState.init = true; | 
|   | 
|   // start cipher | 
|   var cipher = s.cipherState.cipher; | 
|   cipher.start({iv: iv}); | 
|   | 
|   // TLS 1.1+ write IV into output | 
|   if(record.version.minor >= tls.Versions.TLS_1_1.minor) { | 
|     cipher.output.putBytes(iv); | 
|   } | 
|   | 
|   // do encryption (default padding is appropriate) | 
|   cipher.update(record.fragment); | 
|   if(cipher.finish(encrypt_aes_cbc_sha1_padding)) { | 
|     // set record fragment to encrypted output | 
|     record.fragment = cipher.output; | 
|     record.length = record.fragment.length(); | 
|     rval = true; | 
|   } | 
|   | 
|   return rval; | 
| } | 
|   | 
| /** | 
|  * Handles padding for aes_cbc_sha1 in encrypt mode. | 
|  * | 
|  * @param blockSize the block size. | 
|  * @param input the input buffer. | 
|  * @param decrypt true in decrypt mode, false in encrypt mode. | 
|  * | 
|  * @return true on success, false on failure. | 
|  */ | 
| function encrypt_aes_cbc_sha1_padding(blockSize, input, decrypt) { | 
|   /* The encrypted data length (TLSCiphertext.length) is one more than the sum | 
|    of SecurityParameters.block_length, TLSCompressed.length, | 
|    SecurityParameters.mac_length, and padding_length. | 
|   | 
|    The padding may be any length up to 255 bytes long, as long as it results in | 
|    the TLSCiphertext.length being an integral multiple of the block length. | 
|    Lengths longer than necessary might be desirable to frustrate attacks on a | 
|    protocol based on analysis of the lengths of exchanged messages. Each uint8 | 
|    in the padding data vector must be filled with the padding length value. | 
|   | 
|    The padding length should be such that the total size of the | 
|    GenericBlockCipher structure is a multiple of the cipher's block length. | 
|    Legal values range from zero to 255, inclusive. This length specifies the | 
|    length of the padding field exclusive of the padding_length field itself. | 
|   | 
|    This is slightly different from PKCS#7 because the padding value is 1 | 
|    less than the actual number of padding bytes if you include the | 
|    padding_length uint8 itself as a padding byte. */ | 
|   if(!decrypt) { | 
|     // get the number of padding bytes required to reach the blockSize and | 
|     // subtract 1 for the padding value (to make room for the padding_length | 
|     // uint8) | 
|     var padding = blockSize - (input.length() % blockSize); | 
|     input.fillWithByte(padding - 1, padding); | 
|   } | 
|   return true; | 
| } | 
|   | 
| /** | 
|  * Handles padding for aes_cbc_sha1 in decrypt mode. | 
|  * | 
|  * @param blockSize the block size. | 
|  * @param output the output buffer. | 
|  * @param decrypt true in decrypt mode, false in encrypt mode. | 
|  * | 
|  * @return true on success, false on failure. | 
|  */ | 
| function decrypt_aes_cbc_sha1_padding(blockSize, output, decrypt) { | 
|   var rval = true; | 
|   if(decrypt) { | 
|     /* The last byte in the output specifies the number of padding bytes not | 
|       including itself. Each of the padding bytes has the same value as that | 
|       last byte (known as the padding_length). Here we check all padding | 
|       bytes to ensure they have the value of padding_length even if one of | 
|       them is bad in order to ward-off timing attacks. */ | 
|     var len = output.length(); | 
|     var paddingLength = output.last(); | 
|     for(var i = len - 1 - paddingLength; i < len - 1; ++i) { | 
|       rval = rval && (output.at(i) == paddingLength); | 
|     } | 
|     if(rval) { | 
|       // trim off padding bytes and last padding length byte | 
|       output.truncate(paddingLength + 1); | 
|     } | 
|   } | 
|   return rval; | 
| } | 
|   | 
| /** | 
|  * Decrypts a TLSCipherText record into a TLSCompressed record using | 
|  * AES in CBC mode. | 
|  * | 
|  * @param record the TLSCipherText record to decrypt. | 
|  * @param s the ConnectionState to use. | 
|  * | 
|  * @return true on success, false on failure. | 
|  */ | 
| function decrypt_aes_cbc_sha1(record, s) { | 
|   var rval = false; | 
|   | 
|   var iv; | 
|   if(record.version.minor === tls.Versions.TLS_1_0.minor) { | 
|     // use pre-generated IV when initializing for TLS 1.0, otherwise use the | 
|     // residue from the previous decryption | 
|     iv = s.cipherState.init ? null : s.cipherState.iv; | 
|   } else { | 
|     // TLS 1.1+ use an explicit IV every time to protect against CBC attacks | 
|     // that is appended to the record fragment | 
|     iv = record.fragment.getBytes(16); | 
|   } | 
|   | 
|   s.cipherState.init = true; | 
|   | 
|   // start cipher | 
|   var cipher = s.cipherState.cipher; | 
|   cipher.start({iv: iv}); | 
|   | 
|   // do decryption | 
|   cipher.update(record.fragment); | 
|   rval = cipher.finish(decrypt_aes_cbc_sha1_padding); | 
|   | 
|   // even if decryption fails, keep going to minimize timing attacks | 
|   | 
|   // decrypted data: | 
|   // first (len - 20) bytes = application data | 
|   // last 20 bytes          = MAC | 
|   var macLen = s.macLength; | 
|   | 
|   // create a random MAC to check against should the mac length check fail | 
|   // Note: do this regardless of the failure to keep timing consistent | 
|   var mac = forge.random.getBytesSync(macLen); | 
|   | 
|   // get fragment and mac | 
|   var len = cipher.output.length(); | 
|   if(len >= macLen) { | 
|     record.fragment = cipher.output.getBytes(len - macLen); | 
|     mac = cipher.output.getBytes(macLen); | 
|   } else { | 
|     // bad data, but get bytes anyway to try to keep timing consistent | 
|     record.fragment = cipher.output.getBytes(); | 
|   } | 
|   record.fragment = forge.util.createBuffer(record.fragment); | 
|   record.length = record.fragment.length(); | 
|   | 
|   // see if data integrity checks out, update sequence number | 
|   var mac2 = s.macFunction(s.macKey, s.sequenceNumber, record); | 
|   s.updateSequenceNumber(); | 
|   rval = compareMacs(s.macKey, mac, mac2) && rval; | 
|   return rval; | 
| } | 
|   | 
| /** | 
|  * Safely compare two MACs. This function will compare two MACs in a way | 
|  * that protects against timing attacks. | 
|  * | 
|  * TODO: Expose elsewhere as a utility API. | 
|  * | 
|  * See: https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2011/february/double-hmac-verification/ | 
|  * | 
|  * @param key the MAC key to use. | 
|  * @param mac1 as a binary-encoded string of bytes. | 
|  * @param mac2 as a binary-encoded string of bytes. | 
|  * | 
|  * @return true if the MACs are the same, false if not. | 
|  */ | 
| function compareMacs(key, mac1, mac2) { | 
|   var hmac = forge.hmac.create(); | 
|   | 
|   hmac.start('SHA1', key); | 
|   hmac.update(mac1); | 
|   mac1 = hmac.digest().getBytes(); | 
|   | 
|   hmac.start(null, null); | 
|   hmac.update(mac2); | 
|   mac2 = hmac.digest().getBytes(); | 
|   | 
|   return mac1 === mac2; | 
| } |