| "use strict"; | 
|   | 
| var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault"); | 
| var _assert = _interopRequireDefault(require("assert")); | 
| var leap = _interopRequireWildcard(require("./leap")); | 
| var meta = _interopRequireWildcard(require("./meta")); | 
| var util = _interopRequireWildcard(require("./util")); | 
| function _getRequireWildcardCache(nodeInterop) { if (typeof WeakMap !== "function") return null; var cacheBabelInterop = new WeakMap(); var cacheNodeInterop = new WeakMap(); return (_getRequireWildcardCache = function _getRequireWildcardCache(nodeInterop) { return nodeInterop ? cacheNodeInterop : cacheBabelInterop; })(nodeInterop); } | 
| function _interopRequireWildcard(obj, nodeInterop) { if (!nodeInterop && obj && obj.__esModule) { return obj; } if (obj === null || typeof obj !== "object" && typeof obj !== "function") { return { "default": obj }; } var cache = _getRequireWildcardCache(nodeInterop); if (cache && cache.has(obj)) { return cache.get(obj); } var newObj = {}; var hasPropertyDescriptor = Object.defineProperty && Object.getOwnPropertyDescriptor; for (var key in obj) { if (key !== "default" && Object.prototype.hasOwnProperty.call(obj, key)) { var desc = hasPropertyDescriptor ? Object.getOwnPropertyDescriptor(obj, key) : null; if (desc && (desc.get || desc.set)) { Object.defineProperty(newObj, key, desc); } else { newObj[key] = obj[key]; } } } newObj["default"] = obj; if (cache) { cache.set(obj, newObj); } return newObj; } | 
| /** | 
|  * Copyright (c) 2014-present, Facebook, Inc. | 
|  * | 
|  * This source code is licensed under the MIT license found in the | 
|  * LICENSE file in the root directory of this source tree. | 
|  */ | 
|   | 
| var hasOwn = Object.prototype.hasOwnProperty; | 
| function Emitter(contextId) { | 
|   _assert["default"].ok(this instanceof Emitter); | 
|   util.getTypes().assertIdentifier(contextId); | 
|   | 
|   // Used to generate unique temporary names. | 
|   this.nextTempId = 0; | 
|   | 
|   // In order to make sure the context object does not collide with | 
|   // anything in the local scope, we might have to rename it, so we | 
|   // refer to it symbolically instead of just assuming that it will be | 
|   // called "context". | 
|   this.contextId = contextId; | 
|   | 
|   // An append-only list of Statements that grows each time this.emit is | 
|   // called. | 
|   this.listing = []; | 
|   | 
|   // A sparse array whose keys correspond to locations in this.listing | 
|   // that have been marked as branch/jump targets. | 
|   this.marked = [true]; | 
|   this.insertedLocs = new Set(); | 
|   | 
|   // The last location will be marked when this.getDispatchLoop is | 
|   // called. | 
|   this.finalLoc = this.loc(); | 
|   | 
|   // A list of all leap.TryEntry statements emitted. | 
|   this.tryEntries = []; | 
|   | 
|   // Each time we evaluate the body of a loop, we tell this.leapManager | 
|   // to enter a nested loop context that determines the meaning of break | 
|   // and continue statements therein. | 
|   this.leapManager = new leap.LeapManager(this); | 
| } | 
| var Ep = Emitter.prototype; | 
| exports.Emitter = Emitter; | 
|   | 
| // Offsets into this.listing that could be used as targets for branches or | 
| // jumps are represented as numeric Literal nodes. This representation has | 
| // the amazingly convenient benefit of allowing the exact value of the | 
| // location to be determined at any time, even after generating code that | 
| // refers to the location. | 
| Ep.loc = function () { | 
|   var l = util.getTypes().numericLiteral(-1); | 
|   this.insertedLocs.add(l); | 
|   return l; | 
| }; | 
| Ep.getInsertedLocs = function () { | 
|   return this.insertedLocs; | 
| }; | 
| Ep.getContextId = function () { | 
|   return util.getTypes().clone(this.contextId); | 
| }; | 
|   | 
| // Sets the exact value of the given location to the offset of the next | 
| // Statement emitted. | 
| Ep.mark = function (loc) { | 
|   util.getTypes().assertLiteral(loc); | 
|   var index = this.listing.length; | 
|   if (loc.value === -1) { | 
|     loc.value = index; | 
|   } else { | 
|     // Locations can be marked redundantly, but their values cannot change | 
|     // once set the first time. | 
|     _assert["default"].strictEqual(loc.value, index); | 
|   } | 
|   this.marked[index] = true; | 
|   return loc; | 
| }; | 
| Ep.emit = function (node) { | 
|   var t = util.getTypes(); | 
|   if (t.isExpression(node)) { | 
|     node = t.expressionStatement(node); | 
|   } | 
|   t.assertStatement(node); | 
|   this.listing.push(node); | 
| }; | 
|   | 
| // Shorthand for emitting assignment statements. This will come in handy | 
| // for assignments to temporary variables. | 
| Ep.emitAssign = function (lhs, rhs) { | 
|   this.emit(this.assign(lhs, rhs)); | 
|   return lhs; | 
| }; | 
|   | 
| // Shorthand for an assignment statement. | 
| Ep.assign = function (lhs, rhs) { | 
|   var t = util.getTypes(); | 
|   return t.expressionStatement(t.assignmentExpression("=", t.cloneDeep(lhs), rhs)); | 
| }; | 
|   | 
| // Convenience function for generating expressions like context.next, | 
| // context.sent, and context.rval. | 
| Ep.contextProperty = function (name, computed) { | 
|   var t = util.getTypes(); | 
|   return t.memberExpression(this.getContextId(), computed ? t.stringLiteral(name) : t.identifier(name), !!computed); | 
| }; | 
|   | 
| // Shorthand for setting context.rval and jumping to `context.stop()`. | 
| Ep.stop = function (rval) { | 
|   if (rval) { | 
|     this.setReturnValue(rval); | 
|   } | 
|   this.jump(this.finalLoc); | 
| }; | 
| Ep.setReturnValue = function (valuePath) { | 
|   util.getTypes().assertExpression(valuePath.value); | 
|   this.emitAssign(this.contextProperty("rval"), this.explodeExpression(valuePath)); | 
| }; | 
| Ep.clearPendingException = function (tryLoc, assignee) { | 
|   var t = util.getTypes(); | 
|   t.assertLiteral(tryLoc); | 
|   var catchCall = t.callExpression(this.contextProperty("catch", true), [t.clone(tryLoc)]); | 
|   if (assignee) { | 
|     this.emitAssign(assignee, catchCall); | 
|   } else { | 
|     this.emit(catchCall); | 
|   } | 
| }; | 
|   | 
| // Emits code for an unconditional jump to the given location, even if the | 
| // exact value of the location is not yet known. | 
| Ep.jump = function (toLoc) { | 
|   this.emitAssign(this.contextProperty("next"), toLoc); | 
|   this.emit(util.getTypes().breakStatement()); | 
| }; | 
|   | 
| // Conditional jump. | 
| Ep.jumpIf = function (test, toLoc) { | 
|   var t = util.getTypes(); | 
|   t.assertExpression(test); | 
|   t.assertLiteral(toLoc); | 
|   this.emit(t.ifStatement(test, t.blockStatement([this.assign(this.contextProperty("next"), toLoc), t.breakStatement()]))); | 
| }; | 
|   | 
| // Conditional jump, with the condition negated. | 
| Ep.jumpIfNot = function (test, toLoc) { | 
|   var t = util.getTypes(); | 
|   t.assertExpression(test); | 
|   t.assertLiteral(toLoc); | 
|   var negatedTest; | 
|   if (t.isUnaryExpression(test) && test.operator === "!") { | 
|     // Avoid double negation. | 
|     negatedTest = test.argument; | 
|   } else { | 
|     negatedTest = t.unaryExpression("!", test); | 
|   } | 
|   this.emit(t.ifStatement(negatedTest, t.blockStatement([this.assign(this.contextProperty("next"), toLoc), t.breakStatement()]))); | 
| }; | 
|   | 
| // Returns a unique MemberExpression that can be used to store and | 
| // retrieve temporary values. Since the object of the member expression is | 
| // the context object, which is presumed to coexist peacefully with all | 
| // other local variables, and since we just increment `nextTempId` | 
| // monotonically, uniqueness is assured. | 
| Ep.makeTempVar = function () { | 
|   return this.contextProperty("t" + this.nextTempId++); | 
| }; | 
| Ep.getContextFunction = function (id) { | 
|   var t = util.getTypes(); | 
|   return t.functionExpression(id || null /*Anonymous*/, [this.getContextId()], t.blockStatement([this.getDispatchLoop()]), false, | 
|   // Not a generator anymore! | 
|   false // Nor an expression. | 
|   ); | 
| }; | 
|   | 
| // Turns this.listing into a loop of the form | 
| // | 
| //   while (1) switch (context.next) { | 
| //   case 0: | 
| //   ... | 
| //   case n: | 
| //     return context.stop(); | 
| //   } | 
| // | 
| // Each marked location in this.listing will correspond to one generated | 
| // case statement. | 
| Ep.getDispatchLoop = function () { | 
|   var self = this; | 
|   var t = util.getTypes(); | 
|   var cases = []; | 
|   var current; | 
|   | 
|   // If we encounter a break, continue, or return statement in a switch | 
|   // case, we can skip the rest of the statements until the next case. | 
|   var alreadyEnded = false; | 
|   self.listing.forEach(function (stmt, i) { | 
|     if (self.marked.hasOwnProperty(i)) { | 
|       cases.push(t.switchCase(t.numericLiteral(i), current = [])); | 
|       alreadyEnded = false; | 
|     } | 
|     if (!alreadyEnded) { | 
|       current.push(stmt); | 
|       if (t.isCompletionStatement(stmt)) alreadyEnded = true; | 
|     } | 
|   }); | 
|   | 
|   // Now that we know how many statements there will be in this.listing, | 
|   // we can finally resolve this.finalLoc.value. | 
|   this.finalLoc.value = this.listing.length; | 
|   cases.push(t.switchCase(this.finalLoc, [ | 
|     // Intentionally fall through to the "end" case... | 
|   ]), | 
|   // So that the runtime can jump to the final location without having | 
|   // to know its offset, we provide the "end" case as a synonym. | 
|   t.switchCase(t.stringLiteral("end"), [ | 
|   // This will check/clear both context.thrown and context.rval. | 
|   t.returnStatement(t.callExpression(this.contextProperty("stop"), []))])); | 
|   return t.whileStatement(t.numericLiteral(1), t.switchStatement(t.assignmentExpression("=", this.contextProperty("prev"), this.contextProperty("next")), cases)); | 
| }; | 
| Ep.getTryLocsList = function () { | 
|   if (this.tryEntries.length === 0) { | 
|     // To avoid adding a needless [] to the majority of runtime.wrap | 
|     // argument lists, force the caller to handle this case specially. | 
|     return null; | 
|   } | 
|   var t = util.getTypes(); | 
|   var lastLocValue = 0; | 
|   return t.arrayExpression(this.tryEntries.map(function (tryEntry) { | 
|     var thisLocValue = tryEntry.firstLoc.value; | 
|     _assert["default"].ok(thisLocValue >= lastLocValue, "try entries out of order"); | 
|     lastLocValue = thisLocValue; | 
|     var ce = tryEntry.catchEntry; | 
|     var fe = tryEntry.finallyEntry; | 
|     var locs = [tryEntry.firstLoc, | 
|     // The null here makes a hole in the array. | 
|     ce ? ce.firstLoc : null]; | 
|     if (fe) { | 
|       locs[2] = fe.firstLoc; | 
|       locs[3] = fe.afterLoc; | 
|     } | 
|     return t.arrayExpression(locs.map(function (loc) { | 
|       return loc && t.clone(loc); | 
|     })); | 
|   })); | 
| }; | 
|   | 
| // All side effects must be realized in order. | 
|   | 
| // If any subexpression harbors a leap, all subexpressions must be | 
| // neutered of side effects. | 
|   | 
| // No destructive modification of AST nodes. | 
|   | 
| Ep.explode = function (path, ignoreResult) { | 
|   var t = util.getTypes(); | 
|   var node = path.node; | 
|   var self = this; | 
|   t.assertNode(node); | 
|   if (t.isDeclaration(node)) throw getDeclError(node); | 
|   if (t.isStatement(node)) return self.explodeStatement(path); | 
|   if (t.isExpression(node)) return self.explodeExpression(path, ignoreResult); | 
|   switch (node.type) { | 
|     case "Program": | 
|       return path.get("body").map(self.explodeStatement, self); | 
|     case "VariableDeclarator": | 
|       throw getDeclError(node); | 
|   | 
|     // These node types should be handled by their parent nodes | 
|     // (ObjectExpression, SwitchStatement, and TryStatement, respectively). | 
|     case "Property": | 
|     case "SwitchCase": | 
|     case "CatchClause": | 
|       throw new Error(node.type + " nodes should be handled by their parents"); | 
|     default: | 
|       throw new Error("unknown Node of type " + JSON.stringify(node.type)); | 
|   } | 
| }; | 
| function getDeclError(node) { | 
|   return new Error("all declarations should have been transformed into " + "assignments before the Exploder began its work: " + JSON.stringify(node)); | 
| } | 
| Ep.explodeStatement = function (path, labelId) { | 
|   var t = util.getTypes(); | 
|   var stmt = path.node; | 
|   var self = this; | 
|   var before, after, head; | 
|   t.assertStatement(stmt); | 
|   if (labelId) { | 
|     t.assertIdentifier(labelId); | 
|   } else { | 
|     labelId = null; | 
|   } | 
|   | 
|   // Explode BlockStatement nodes even if they do not contain a yield, | 
|   // because we don't want or need the curly braces. | 
|   if (t.isBlockStatement(stmt)) { | 
|     path.get("body").forEach(function (path) { | 
|       self.explodeStatement(path); | 
|     }); | 
|     return; | 
|   } | 
|   if (!meta.containsLeap(stmt)) { | 
|     // Technically we should be able to avoid emitting the statement | 
|     // altogether if !meta.hasSideEffects(stmt), but that leads to | 
|     // confusing generated code (for instance, `while (true) {}` just | 
|     // disappears) and is probably a more appropriate job for a dedicated | 
|     // dead code elimination pass. | 
|     self.emit(stmt); | 
|     return; | 
|   } | 
|   switch (stmt.type) { | 
|     case "ExpressionStatement": | 
|       self.explodeExpression(path.get("expression"), true); | 
|       break; | 
|     case "LabeledStatement": | 
|       after = this.loc(); | 
|   | 
|       // Did you know you can break from any labeled block statement or | 
|       // control structure? Well, you can! Note: when a labeled loop is | 
|       // encountered, the leap.LabeledEntry created here will immediately | 
|       // enclose a leap.LoopEntry on the leap manager's stack, and both | 
|       // entries will have the same label. Though this works just fine, it | 
|       // may seem a bit redundant. In theory, we could check here to | 
|       // determine if stmt knows how to handle its own label; for example, | 
|       // stmt happens to be a WhileStatement and so we know it's going to | 
|       // establish its own LoopEntry when we explode it (below). Then this | 
|       // LabeledEntry would be unnecessary. Alternatively, we might be | 
|       // tempted not to pass stmt.label down into self.explodeStatement, | 
|       // because we've handled the label here, but that's a mistake because | 
|       // labeled loops may contain labeled continue statements, which is not | 
|       // something we can handle in this generic case. All in all, I think a | 
|       // little redundancy greatly simplifies the logic of this case, since | 
|       // it's clear that we handle all possible LabeledStatements correctly | 
|       // here, regardless of whether they interact with the leap manager | 
|       // themselves. Also remember that labels and break/continue-to-label | 
|       // statements are rare, and all of this logic happens at transform | 
|       // time, so it has no additional runtime cost. | 
|       self.leapManager.withEntry(new leap.LabeledEntry(after, stmt.label), function () { | 
|         self.explodeStatement(path.get("body"), stmt.label); | 
|       }); | 
|       self.mark(after); | 
|       break; | 
|     case "WhileStatement": | 
|       before = this.loc(); | 
|       after = this.loc(); | 
|       self.mark(before); | 
|       self.jumpIfNot(self.explodeExpression(path.get("test")), after); | 
|       self.leapManager.withEntry(new leap.LoopEntry(after, before, labelId), function () { | 
|         self.explodeStatement(path.get("body")); | 
|       }); | 
|       self.jump(before); | 
|       self.mark(after); | 
|       break; | 
|     case "DoWhileStatement": | 
|       var first = this.loc(); | 
|       var test = this.loc(); | 
|       after = this.loc(); | 
|       self.mark(first); | 
|       self.leapManager.withEntry(new leap.LoopEntry(after, test, labelId), function () { | 
|         self.explode(path.get("body")); | 
|       }); | 
|       self.mark(test); | 
|       self.jumpIf(self.explodeExpression(path.get("test")), first); | 
|       self.mark(after); | 
|       break; | 
|     case "ForStatement": | 
|       head = this.loc(); | 
|       var update = this.loc(); | 
|       after = this.loc(); | 
|       if (stmt.init) { | 
|         // We pass true here to indicate that if stmt.init is an expression | 
|         // then we do not care about its result. | 
|         self.explode(path.get("init"), true); | 
|       } | 
|       self.mark(head); | 
|       if (stmt.test) { | 
|         self.jumpIfNot(self.explodeExpression(path.get("test")), after); | 
|       } else { | 
|         // No test means continue unconditionally. | 
|       } | 
|       self.leapManager.withEntry(new leap.LoopEntry(after, update, labelId), function () { | 
|         self.explodeStatement(path.get("body")); | 
|       }); | 
|       self.mark(update); | 
|       if (stmt.update) { | 
|         // We pass true here to indicate that if stmt.update is an | 
|         // expression then we do not care about its result. | 
|         self.explode(path.get("update"), true); | 
|       } | 
|       self.jump(head); | 
|       self.mark(after); | 
|       break; | 
|     case "TypeCastExpression": | 
|       return self.explodeExpression(path.get("expression")); | 
|     case "ForInStatement": | 
|       head = this.loc(); | 
|       after = this.loc(); | 
|       var keyIterNextFn = self.makeTempVar(); | 
|       self.emitAssign(keyIterNextFn, t.callExpression(util.runtimeProperty("keys"), [self.explodeExpression(path.get("right"))])); | 
|       self.mark(head); | 
|       var keyInfoTmpVar = self.makeTempVar(); | 
|       self.jumpIf(t.memberExpression(t.assignmentExpression("=", keyInfoTmpVar, t.callExpression(t.cloneDeep(keyIterNextFn), [])), t.identifier("done"), false), after); | 
|       self.emitAssign(stmt.left, t.memberExpression(t.cloneDeep(keyInfoTmpVar), t.identifier("value"), false)); | 
|       self.leapManager.withEntry(new leap.LoopEntry(after, head, labelId), function () { | 
|         self.explodeStatement(path.get("body")); | 
|       }); | 
|       self.jump(head); | 
|       self.mark(after); | 
|       break; | 
|     case "BreakStatement": | 
|       self.emitAbruptCompletion({ | 
|         type: "break", | 
|         target: self.leapManager.getBreakLoc(stmt.label) | 
|       }); | 
|       break; | 
|     case "ContinueStatement": | 
|       self.emitAbruptCompletion({ | 
|         type: "continue", | 
|         target: self.leapManager.getContinueLoc(stmt.label) | 
|       }); | 
|       break; | 
|     case "SwitchStatement": | 
|       // Always save the discriminant into a temporary variable in case the | 
|       // test expressions overwrite values like context.sent. | 
|       var disc = self.emitAssign(self.makeTempVar(), self.explodeExpression(path.get("discriminant"))); | 
|       after = this.loc(); | 
|       var defaultLoc = this.loc(); | 
|       var condition = defaultLoc; | 
|       var caseLocs = []; | 
|   | 
|       // If there are no cases, .cases might be undefined. | 
|       var cases = stmt.cases || []; | 
|       for (var i = cases.length - 1; i >= 0; --i) { | 
|         var c = cases[i]; | 
|         t.assertSwitchCase(c); | 
|         if (c.test) { | 
|           condition = t.conditionalExpression(t.binaryExpression("===", t.cloneDeep(disc), c.test), caseLocs[i] = this.loc(), condition); | 
|         } else { | 
|           caseLocs[i] = defaultLoc; | 
|         } | 
|       } | 
|       var discriminant = path.get("discriminant"); | 
|       util.replaceWithOrRemove(discriminant, condition); | 
|       self.jump(self.explodeExpression(discriminant)); | 
|       self.leapManager.withEntry(new leap.SwitchEntry(after), function () { | 
|         path.get("cases").forEach(function (casePath) { | 
|           var i = casePath.key; | 
|           self.mark(caseLocs[i]); | 
|           casePath.get("consequent").forEach(function (path) { | 
|             self.explodeStatement(path); | 
|           }); | 
|         }); | 
|       }); | 
|       self.mark(after); | 
|       if (defaultLoc.value === -1) { | 
|         self.mark(defaultLoc); | 
|         _assert["default"].strictEqual(after.value, defaultLoc.value); | 
|       } | 
|       break; | 
|     case "IfStatement": | 
|       var elseLoc = stmt.alternate && this.loc(); | 
|       after = this.loc(); | 
|       self.jumpIfNot(self.explodeExpression(path.get("test")), elseLoc || after); | 
|       self.explodeStatement(path.get("consequent")); | 
|       if (elseLoc) { | 
|         self.jump(after); | 
|         self.mark(elseLoc); | 
|         self.explodeStatement(path.get("alternate")); | 
|       } | 
|       self.mark(after); | 
|       break; | 
|     case "ReturnStatement": | 
|       self.emitAbruptCompletion({ | 
|         type: "return", | 
|         value: self.explodeExpression(path.get("argument")) | 
|       }); | 
|       break; | 
|     case "WithStatement": | 
|       throw new Error("WithStatement not supported in generator functions."); | 
|     case "TryStatement": | 
|       after = this.loc(); | 
|       var handler = stmt.handler; | 
|       var catchLoc = handler && this.loc(); | 
|       var catchEntry = catchLoc && new leap.CatchEntry(catchLoc, handler.param); | 
|       var finallyLoc = stmt.finalizer && this.loc(); | 
|       var finallyEntry = finallyLoc && new leap.FinallyEntry(finallyLoc, after); | 
|       var tryEntry = new leap.TryEntry(self.getUnmarkedCurrentLoc(), catchEntry, finallyEntry); | 
|       self.tryEntries.push(tryEntry); | 
|       self.updateContextPrevLoc(tryEntry.firstLoc); | 
|       self.leapManager.withEntry(tryEntry, function () { | 
|         self.explodeStatement(path.get("block")); | 
|         if (catchLoc) { | 
|           if (finallyLoc) { | 
|             // If we have both a catch block and a finally block, then | 
|             // because we emit the catch block first, we need to jump over | 
|             // it to the finally block. | 
|             self.jump(finallyLoc); | 
|           } else { | 
|             // If there is no finally block, then we need to jump over the | 
|             // catch block to the fall-through location. | 
|             self.jump(after); | 
|           } | 
|           self.updateContextPrevLoc(self.mark(catchLoc)); | 
|           var bodyPath = path.get("handler.body"); | 
|           var safeParam = self.makeTempVar(); | 
|           self.clearPendingException(tryEntry.firstLoc, safeParam); | 
|           bodyPath.traverse(catchParamVisitor, { | 
|             getSafeParam: function getSafeParam() { | 
|               return t.cloneDeep(safeParam); | 
|             }, | 
|             catchParamName: handler.param.name | 
|           }); | 
|           self.leapManager.withEntry(catchEntry, function () { | 
|             self.explodeStatement(bodyPath); | 
|           }); | 
|         } | 
|         if (finallyLoc) { | 
|           self.updateContextPrevLoc(self.mark(finallyLoc)); | 
|           self.leapManager.withEntry(finallyEntry, function () { | 
|             self.explodeStatement(path.get("finalizer")); | 
|           }); | 
|           self.emit(t.returnStatement(t.callExpression(self.contextProperty("finish"), [finallyEntry.firstLoc]))); | 
|         } | 
|       }); | 
|       self.mark(after); | 
|       break; | 
|     case "ThrowStatement": | 
|       self.emit(t.throwStatement(self.explodeExpression(path.get("argument")))); | 
|       break; | 
|     case "ClassDeclaration": | 
|       self.emit(self.explodeClass(path)); | 
|       break; | 
|     default: | 
|       throw new Error("unknown Statement of type " + JSON.stringify(stmt.type)); | 
|   } | 
| }; | 
| var catchParamVisitor = { | 
|   Identifier: function Identifier(path, state) { | 
|     if (path.node.name === state.catchParamName && util.isReference(path)) { | 
|       util.replaceWithOrRemove(path, state.getSafeParam()); | 
|     } | 
|   }, | 
|   Scope: function Scope(path, state) { | 
|     if (path.scope.hasOwnBinding(state.catchParamName)) { | 
|       // Don't descend into nested scopes that shadow the catch | 
|       // parameter with their own declarations. | 
|       path.skip(); | 
|     } | 
|   } | 
| }; | 
| Ep.emitAbruptCompletion = function (record) { | 
|   if (!isValidCompletion(record)) { | 
|     _assert["default"].ok(false, "invalid completion record: " + JSON.stringify(record)); | 
|   } | 
|   _assert["default"].notStrictEqual(record.type, "normal", "normal completions are not abrupt"); | 
|   var t = util.getTypes(); | 
|   var abruptArgs = [t.stringLiteral(record.type)]; | 
|   if (record.type === "break" || record.type === "continue") { | 
|     t.assertLiteral(record.target); | 
|     abruptArgs[1] = this.insertedLocs.has(record.target) ? record.target : t.cloneDeep(record.target); | 
|   } else if (record.type === "return" || record.type === "throw") { | 
|     if (record.value) { | 
|       t.assertExpression(record.value); | 
|       abruptArgs[1] = this.insertedLocs.has(record.value) ? record.value : t.cloneDeep(record.value); | 
|     } | 
|   } | 
|   this.emit(t.returnStatement(t.callExpression(this.contextProperty("abrupt"), abruptArgs))); | 
| }; | 
| function isValidCompletion(record) { | 
|   var type = record.type; | 
|   if (type === "normal") { | 
|     return !hasOwn.call(record, "target"); | 
|   } | 
|   if (type === "break" || type === "continue") { | 
|     return !hasOwn.call(record, "value") && util.getTypes().isLiteral(record.target); | 
|   } | 
|   if (type === "return" || type === "throw") { | 
|     return hasOwn.call(record, "value") && !hasOwn.call(record, "target"); | 
|   } | 
|   return false; | 
| } | 
|   | 
| // Not all offsets into emitter.listing are potential jump targets. For | 
| // example, execution typically falls into the beginning of a try block | 
| // without jumping directly there. This method returns the current offset | 
| // without marking it, so that a switch case will not necessarily be | 
| // generated for this offset (I say "not necessarily" because the same | 
| // location might end up being marked in the process of emitting other | 
| // statements). There's no logical harm in marking such locations as jump | 
| // targets, but minimizing the number of switch cases keeps the generated | 
| // code shorter. | 
| Ep.getUnmarkedCurrentLoc = function () { | 
|   return util.getTypes().numericLiteral(this.listing.length); | 
| }; | 
|   | 
| // The context.prev property takes the value of context.next whenever we | 
| // evaluate the switch statement discriminant, which is generally good | 
| // enough for tracking the last location we jumped to, but sometimes | 
| // context.prev needs to be more precise, such as when we fall | 
| // successfully out of a try block and into a finally block without | 
| // jumping. This method exists to update context.prev to the freshest | 
| // available location. If we were implementing a full interpreter, we | 
| // would know the location of the current instruction with complete | 
| // precision at all times, but we don't have that luxury here, as it would | 
| // be costly and verbose to set context.prev before every statement. | 
| Ep.updateContextPrevLoc = function (loc) { | 
|   var t = util.getTypes(); | 
|   if (loc) { | 
|     t.assertLiteral(loc); | 
|     if (loc.value === -1) { | 
|       // If an uninitialized location literal was passed in, set its value | 
|       // to the current this.listing.length. | 
|       loc.value = this.listing.length; | 
|     } else { | 
|       // Otherwise assert that the location matches the current offset. | 
|       _assert["default"].strictEqual(loc.value, this.listing.length); | 
|     } | 
|   } else { | 
|     loc = this.getUnmarkedCurrentLoc(); | 
|   } | 
|   | 
|   // Make sure context.prev is up to date in case we fell into this try | 
|   // statement without jumping to it. TODO Consider avoiding this | 
|   // assignment when we know control must have jumped here. | 
|   this.emitAssign(this.contextProperty("prev"), loc); | 
| }; | 
|   | 
| // In order to save the rest of explodeExpression from a combinatorial | 
| // trainwreck of special cases, explodeViaTempVar is responsible for | 
| // deciding when a subexpression needs to be "exploded," which is my | 
| // very technical term for emitting the subexpression as an assignment | 
| // to a temporary variable and the substituting the temporary variable | 
| // for the original subexpression. Think of exploded view diagrams, not | 
| // Michael Bay movies. The point of exploding subexpressions is to | 
| // control the precise order in which the generated code realizes the | 
| // side effects of those subexpressions. | 
| Ep.explodeViaTempVar = function (tempVar, childPath, hasLeapingChildren, ignoreChildResult) { | 
|   _assert["default"].ok(!ignoreChildResult || !tempVar, "Ignoring the result of a child expression but forcing it to " + "be assigned to a temporary variable?"); | 
|   var t = util.getTypes(); | 
|   var result = this.explodeExpression(childPath, ignoreChildResult); | 
|   if (ignoreChildResult) { | 
|     // Side effects already emitted above. | 
|   } else if (tempVar || hasLeapingChildren && !t.isLiteral(result)) { | 
|     // If tempVar was provided, then the result will always be assigned | 
|     // to it, even if the result does not otherwise need to be assigned | 
|     // to a temporary variable.  When no tempVar is provided, we have | 
|     // the flexibility to decide whether a temporary variable is really | 
|     // necessary.  Unfortunately, in general, a temporary variable is | 
|     // required whenever any child contains a yield expression, since it | 
|     // is difficult to prove (at all, let alone efficiently) whether | 
|     // this result would evaluate to the same value before and after the | 
|     // yield (see #206).  One narrow case where we can prove it doesn't | 
|     // matter (and thus we do not need a temporary variable) is when the | 
|     // result in question is a Literal value. | 
|     result = this.emitAssign(tempVar || this.makeTempVar(), result); | 
|   } | 
|   return result; | 
| }; | 
| Ep.explodeExpression = function (path, ignoreResult) { | 
|   var t = util.getTypes(); | 
|   var expr = path.node; | 
|   if (expr) { | 
|     t.assertExpression(expr); | 
|   } else { | 
|     return expr; | 
|   } | 
|   var self = this; | 
|   var result; // Used optionally by several cases below. | 
|   var after; | 
|   function finish(expr) { | 
|     t.assertExpression(expr); | 
|     if (ignoreResult) { | 
|       self.emit(expr); | 
|     } | 
|     return expr; | 
|   } | 
|   | 
|   // If the expression does not contain a leap, then we either emit the | 
|   // expression as a standalone statement or return it whole. | 
|   if (!meta.containsLeap(expr)) { | 
|     return finish(expr); | 
|   } | 
|   | 
|   // If any child contains a leap (such as a yield or labeled continue or | 
|   // break statement), then any sibling subexpressions will almost | 
|   // certainly have to be exploded in order to maintain the order of their | 
|   // side effects relative to the leaping child(ren). | 
|   var hasLeapingChildren = meta.containsLeap.onlyChildren(expr); | 
|   | 
|   // If ignoreResult is true, then we must take full responsibility for | 
|   // emitting the expression with all its side effects, and we should not | 
|   // return a result. | 
|   | 
|   switch (expr.type) { | 
|     case "MemberExpression": | 
|       return finish(t.memberExpression(self.explodeExpression(path.get("object")), expr.computed ? self.explodeViaTempVar(null, path.get("property"), hasLeapingChildren) : expr.property, expr.computed)); | 
|     case "CallExpression": | 
|       var calleePath = path.get("callee"); | 
|       var argsPath = path.get("arguments"); | 
|       var newCallee; | 
|       var newArgs; | 
|       var hasLeapingArgs = argsPath.some(function (argPath) { | 
|         return meta.containsLeap(argPath.node); | 
|       }); | 
|       var injectFirstArg = null; | 
|       if (t.isMemberExpression(calleePath.node)) { | 
|         if (hasLeapingArgs) { | 
|           // If the arguments of the CallExpression contained any yield | 
|           // expressions, then we need to be sure to evaluate the callee | 
|           // before evaluating the arguments, but if the callee was a member | 
|           // expression, then we must be careful that the object of the | 
|           // member expression still gets bound to `this` for the call. | 
|   | 
|           var newObject = self.explodeViaTempVar( | 
|           // Assign the exploded callee.object expression to a temporary | 
|           // variable so that we can use it twice without reevaluating it. | 
|           self.makeTempVar(), calleePath.get("object"), hasLeapingChildren); | 
|           var newProperty = calleePath.node.computed ? self.explodeViaTempVar(null, calleePath.get("property"), hasLeapingChildren) : calleePath.node.property; | 
|           injectFirstArg = newObject; | 
|           newCallee = t.memberExpression(t.memberExpression(t.cloneDeep(newObject), newProperty, calleePath.node.computed), t.identifier("call"), false); | 
|         } else { | 
|           newCallee = self.explodeExpression(calleePath); | 
|         } | 
|       } else { | 
|         newCallee = self.explodeViaTempVar(null, calleePath, hasLeapingChildren); | 
|         if (t.isMemberExpression(newCallee)) { | 
|           // If the callee was not previously a MemberExpression, then the | 
|           // CallExpression was "unqualified," meaning its `this` object | 
|           // should be the global object. If the exploded expression has | 
|           // become a MemberExpression (e.g. a context property, probably a | 
|           // temporary variable), then we need to force it to be unqualified | 
|           // by using the (0, object.property)(...) trick; otherwise, it | 
|           // will receive the object of the MemberExpression as its `this` | 
|           // object. | 
|           newCallee = t.sequenceExpression([t.numericLiteral(0), t.cloneDeep(newCallee)]); | 
|         } | 
|       } | 
|       if (hasLeapingArgs) { | 
|         newArgs = argsPath.map(function (argPath) { | 
|           return self.explodeViaTempVar(null, argPath, hasLeapingChildren); | 
|         }); | 
|         if (injectFirstArg) newArgs.unshift(injectFirstArg); | 
|         newArgs = newArgs.map(function (arg) { | 
|           return t.cloneDeep(arg); | 
|         }); | 
|       } else { | 
|         newArgs = path.node.arguments; | 
|       } | 
|       return finish(t.callExpression(newCallee, newArgs)); | 
|     case "NewExpression": | 
|       return finish(t.newExpression(self.explodeViaTempVar(null, path.get("callee"), hasLeapingChildren), path.get("arguments").map(function (argPath) { | 
|         return self.explodeViaTempVar(null, argPath, hasLeapingChildren); | 
|       }))); | 
|     case "ObjectExpression": | 
|       return finish(t.objectExpression(path.get("properties").map(function (propPath) { | 
|         if (propPath.isObjectProperty()) { | 
|           return t.objectProperty(propPath.node.key, self.explodeViaTempVar(null, propPath.get("value"), hasLeapingChildren), propPath.node.computed); | 
|         } else { | 
|           return propPath.node; | 
|         } | 
|       }))); | 
|     case "ArrayExpression": | 
|       return finish(t.arrayExpression(path.get("elements").map(function (elemPath) { | 
|         if (!elemPath.node) { | 
|           return null; | 
|         } | 
|         if (elemPath.isSpreadElement()) { | 
|           return t.spreadElement(self.explodeViaTempVar(null, elemPath.get("argument"), hasLeapingChildren)); | 
|         } else { | 
|           return self.explodeViaTempVar(null, elemPath, hasLeapingChildren); | 
|         } | 
|       }))); | 
|     case "SequenceExpression": | 
|       var lastIndex = expr.expressions.length - 1; | 
|       path.get("expressions").forEach(function (exprPath) { | 
|         if (exprPath.key === lastIndex) { | 
|           result = self.explodeExpression(exprPath, ignoreResult); | 
|         } else { | 
|           self.explodeExpression(exprPath, true); | 
|         } | 
|       }); | 
|       return result; | 
|     case "LogicalExpression": | 
|       after = this.loc(); | 
|       if (!ignoreResult) { | 
|         result = self.makeTempVar(); | 
|       } | 
|       var left = self.explodeViaTempVar(result, path.get("left"), hasLeapingChildren); | 
|       if (expr.operator === "&&") { | 
|         self.jumpIfNot(left, after); | 
|       } else { | 
|         _assert["default"].strictEqual(expr.operator, "||"); | 
|         self.jumpIf(left, after); | 
|       } | 
|       self.explodeViaTempVar(result, path.get("right"), hasLeapingChildren, ignoreResult); | 
|       self.mark(after); | 
|       return result; | 
|     case "ConditionalExpression": | 
|       var elseLoc = this.loc(); | 
|       after = this.loc(); | 
|       var test = self.explodeExpression(path.get("test")); | 
|       self.jumpIfNot(test, elseLoc); | 
|       if (!ignoreResult) { | 
|         result = self.makeTempVar(); | 
|       } | 
|       self.explodeViaTempVar(result, path.get("consequent"), hasLeapingChildren, ignoreResult); | 
|       self.jump(after); | 
|       self.mark(elseLoc); | 
|       self.explodeViaTempVar(result, path.get("alternate"), hasLeapingChildren, ignoreResult); | 
|       self.mark(after); | 
|       return result; | 
|     case "UnaryExpression": | 
|       return finish(t.unaryExpression(expr.operator, | 
|       // Can't (and don't need to) break up the syntax of the argument. | 
|       // Think about delete a[b]. | 
|       self.explodeExpression(path.get("argument")), !!expr.prefix)); | 
|     case "BinaryExpression": | 
|       return finish(t.binaryExpression(expr.operator, self.explodeViaTempVar(null, path.get("left"), hasLeapingChildren), self.explodeViaTempVar(null, path.get("right"), hasLeapingChildren))); | 
|     case "AssignmentExpression": | 
|       if (expr.operator === "=") { | 
|         // If this is a simple assignment, the left hand side does not need | 
|         // to be read before the right hand side is evaluated, so we can | 
|         // avoid the more complicated logic below. | 
|         return finish(t.assignmentExpression(expr.operator, self.explodeExpression(path.get("left")), self.explodeExpression(path.get("right")))); | 
|       } | 
|       var lhs = self.explodeExpression(path.get("left")); | 
|       var temp = self.emitAssign(self.makeTempVar(), lhs); | 
|   | 
|       // For example, | 
|       // | 
|       //   x += yield y | 
|       // | 
|       // becomes | 
|       // | 
|       //   context.t0 = x | 
|       //   x = context.t0 += yield y | 
|       // | 
|       // so that the left-hand side expression is read before the yield. | 
|       // Fixes https://github.com/facebook/regenerator/issues/345. | 
|   | 
|       return finish(t.assignmentExpression("=", t.cloneDeep(lhs), t.assignmentExpression(expr.operator, t.cloneDeep(temp), self.explodeExpression(path.get("right"))))); | 
|     case "UpdateExpression": | 
|       return finish(t.updateExpression(expr.operator, self.explodeExpression(path.get("argument")), expr.prefix)); | 
|     case "YieldExpression": | 
|       after = this.loc(); | 
|       var arg = expr.argument && self.explodeExpression(path.get("argument")); | 
|       if (arg && expr.delegate) { | 
|         var _result = self.makeTempVar(); | 
|         var _ret = t.returnStatement(t.callExpression(self.contextProperty("delegateYield"), [arg, t.stringLiteral(_result.property.name), after])); | 
|         _ret.loc = expr.loc; | 
|         self.emit(_ret); | 
|         self.mark(after); | 
|         return _result; | 
|       } | 
|       self.emitAssign(self.contextProperty("next"), after); | 
|       var ret = t.returnStatement(t.cloneDeep(arg) || null); | 
|       // Preserve the `yield` location so that source mappings for the statements | 
|       // link back to the yield properly. | 
|       ret.loc = expr.loc; | 
|       self.emit(ret); | 
|       self.mark(after); | 
|       return self.contextProperty("sent"); | 
|     case "ClassExpression": | 
|       return finish(self.explodeClass(path)); | 
|     default: | 
|       throw new Error("unknown Expression of type " + JSON.stringify(expr.type)); | 
|   } | 
| }; | 
| Ep.explodeClass = function (path) { | 
|   var explodingChildren = []; | 
|   if (path.node.superClass) { | 
|     explodingChildren.push(path.get("superClass")); | 
|   } | 
|   path.get("body.body").forEach(function (member) { | 
|     if (member.node.computed) { | 
|       explodingChildren.push(member.get("key")); | 
|     } | 
|   }); | 
|   var hasLeapingChildren = explodingChildren.some(function (child) { | 
|     return meta.containsLeap(child); | 
|   }); | 
|   for (var i = 0; i < explodingChildren.length; i++) { | 
|     var child = explodingChildren[i]; | 
|     var isLast = i === explodingChildren.length - 1; | 
|     if (isLast) { | 
|       child.replaceWith(this.explodeExpression(child)); | 
|     } else { | 
|       child.replaceWith(this.explodeViaTempVar(null, child, hasLeapingChildren)); | 
|     } | 
|   } | 
|   return path.node; | 
| }; |