package cn.org.hentai.jtt1078.codec.g726; import cn.org.hentai.jtt1078.codec.G711Codec; import cn.org.hentai.jtt1078.codec.G711UCodec; /** G726_16 encoder and decoder. *
* These routines comprise an implementation of the CCITT G.726 16kbps * ADPCM coding algorithm. Essentially, this implementation is identical to * the bit level description except for a few deviations which * take advantage of workstation attributes, such as hardware 2's * complement arithmetic. *
* The deviation from the bit level specification (lookup tables), * preserves the bit level performance specifications. *
* As outlined in the G.723 Recommendation, the algorithm is broken * down into modules. Each section of code below is preceded by * the name of the module which it is implementing. *
* This implementation is based on the ANSI-C language reference implementations * of the CCITT (International Telegraph and Telephone Consultative Committee) * G.711, G.721 and G.723 voice compressions, provided by Sun Microsystems, Inc. *
* Acknowledgement to Sun Microsystems, Inc. for having released the original
* ANSI-C source code to the public domain.
*/
public class G726_16 extends G726 {
// ##### C-to-Java conversion: #####
// short becomes int
// char becomes int
// unsigned char becomes int
// *************************** STATIC ***************************
/*
* Maps G723_16 code word to ructeconstructed scale factor normalized log
* magnitude values.
*/
static /*short*/int[] _dqlntab={116, 365, 365, 116};
/* Maps G723_16 code word to log of scale factor multiplier. */
static /*short*/int[] _witab={-704, 14048, 14048, -704};
/*
* Maps G723_16 code words to a set of values whose long and short
* term averages are computed and then compared to give an indication
* how stationary (steady state) the signal is.
*/
static /*short*/int[] _fitab={ 0x000, 0xE00, 0xE00, 0x000};
static /*short*/int[] qtab_723_16={261};
/** Encodes a 16-bit linear PCM, A-law or u-law input sample and retuens
* the resulting 5-bit CCITT G726 16kbps code.
* Returns -1 if the input coding value is invalid. */
public static int encode(int sl, int in_coding, G726State state) {
/*short*/int sei, sezi, se, sez; /* ACCUM */
/*short*/int d; /* SUBTA */
/*short*/int y; /* MIX */
/*short*/int sr; /* ADDB */
/*short*/int dqsez; /* ADDC */
/*short*/int dq, i;
switch (in_coding) {
/* linearize input sample to 14-bit PCM */
case AUDIO_ENCODING_ALAW:
sl= G711Codec.alaw2linear((byte) sl) >> 2;
break;
case AUDIO_ENCODING_ULAW:
sl= G711UCodec.ulaw2linear((byte)sl) >> 2;
break;
case AUDIO_ENCODING_LINEAR:
sl >>= 2; /* sl of 14-bit dynamic range */
break;
default:
return (-1);
}
sezi=state.predictor_zero();
sez=sezi >> 1;
sei=sezi+state.predictor_pole();
se=sei >> 1; /* se=estimated signal */
d=sl-se; /* d=estimation difference */
/* quantize prediction difference */
y=state.step_size(); /* adaptive quantizer step size */
i=quantize(d, y, qtab_723_16, 1); /* i=ADPCM code */
dq=reconstruct(i & 0x02, _dqlntab[i], y); /* quantized diff */
sr=(dq<0)? se-(dq & 0x3FFF) : se+dq; /* reconstructed signal */
dqsez=sr+sez-se; /* dqsez=pole prediction diff. */
update(2, y, _witab[i], _fitab[i], dq, sr, dqsez, state);
return (i);
}
/** Decodes a 5-bit CCITT G.726 40kbps code and returns
* the resulting 16-bit linear PCM, A-law or u-law sample value.
* -1 is returned if the output coding is unknown. */
public static int decode(int i, int out_coding, G726State state) {
/*short*/int sezi, sei, sez, se; /* ACCUM */
/*short*/int y, dif; /* MIX */
/*short*/int sr; /* ADDB */
/*short*/int dq;
/*short*/int dqsez;
i &= 0x03; /* mask to get proper bits */
sezi=state.predictor_zero();
sez=sezi >> 1;
sei=sezi+state.predictor_pole();
se=sei >> 1; /* se=estimated signal */
y=state.step_size(); /* adaptive quantizer step size */
dq=reconstruct(i & 0x02, _dqlntab[i], y); /* estimation diff. */
sr=(dq<0)? (se-(dq & 0x3FFF)) : (se+dq); /* reconst. signal */
dqsez=sr-se+sez; /* pole prediction diff. */
update(2, y, _witab[i], _fitab[i], dq, sr, dqsez, state);
switch (out_coding) {
case AUDIO_ENCODING_ALAW:
return (tandem_adjust_alaw(sr, se, y, i, 0x02, qtab_723_16));
case AUDIO_ENCODING_ULAW:
return (tandem_adjust_ulaw(sr, se, y, i, 0x02, qtab_723_16));
case AUDIO_ENCODING_LINEAR:
return (sr << 2); /* sr was of 14-bit dynamic range */
default:
return (-1);
}
}
/** Encodes the input chunk in_buff of linear PCM, A-law or u-law data and returns
* the G726_16 encoded chuck into out_buff.
* It returns the actual size of the output data, or -1 in case of unknown
* in_coding value. */
public static int encode(byte[] in_buff, int in_offset, int in_len, int in_coding, byte[] out_buff, int out_offset, G726State state) {
if (in_coding==AUDIO_ENCODING_ALAW || in_coding==AUDIO_ENCODING_ULAW) {
int len_div_8=in_len/8;
for (int i=0; i
* It returns the actual size of the output data, or -1 in case of unknown
* out_coding value. */
public static int decode(byte[] in_buff, int in_offset, int in_len, int out_coding, byte[] out_buff, int out_offset, G726State state) {
if (out_coding==AUDIO_ENCODING_ALAW || out_coding==AUDIO_ENCODING_ULAW) {
int len_div_2=in_len/2;
for (int i=0; i
* It returns the actual size of the output data, or -1 in case of unknown
* in_coding value. */
public int encode(byte[] in_buff, int in_offset, int in_len, int in_coding, byte[] out_buff, int out_offset) {
return encode(in_buff,in_offset,in_len,in_coding,out_buff,out_offset,state);
}
/** Decodes a 5-bit CCITT G.726 40kbps code and returns
* the resulting 16-bit linear PCM, A-law or u-law sample value.
* -1 is returned if the output coding is unknown. */
public int decode(int i, int out_coding) {
return decode(i,out_coding,state);
}
/** Decodes the input chunk in_buff of G726_16 encoded data and returns
* the linear PCM, A-law or u-law chunk into out_buff.
* It returns the actual size of the output data, or -1 in case of unknown
* out_coding value. */
public int decode(byte[] in_buff, int in_offset, int in_len, int out_coding, byte[] out_buff, int out_offset) {
return decode(in_buff,in_offset,in_len,out_coding,out_buff,out_offset,state);
}
}