package cn.org.hentai.jtt1078.codec.g726; import cn.org.hentai.jtt1078.codec.G711Codec; import cn.org.hentai.jtt1078.codec.G711UCodec; /** G726_32 encoder and decoder. *

* These routines comprise an implementation of the CCITT G.726 32kbps ADPCM * coding algorithm. Essentially, this implementation is identical to * the bit level description except for a few deviations which * take advantage of work station attributes, such as hardware 2's * complement arithmetic and large memory. Specifically, certain time * consuming operations such as multiplications are replaced * with lookup tables and software 2's complement operations are * replaced with hardware 2's complement. *

* The deviation from the bit level specification (lookup tables) * preserves the bit level performance specifications. *

* As outlined in the G.726 Recommendation, the algorithm is broken * down into modules. Each section of code below is preceded by * the name of the module which it is implementing. *

* This implementation is based on the ANSI-C language reference implementations * of the CCITT (International Telegraph and Telephone Consultative Committee) * G.711, G.721 and G.723 voice compressions, provided by Sun Microsystems, Inc. *

* Acknowledgement to Sun Microsystems, Inc. for having released the original * ANSI-C source code to the public domain. */ public class G726_32 extends G726 { // ##### C-to-Java conversion: ##### // short becomes int // char becomes int // unsigned char becomes int // *************************** STATIC *************************** static /*short*/int[] qtab_721={-124, 80, 178, 246, 300, 349, 400}; /* * Maps G726_32 code word to reconstructed scale factor normalized log * magnitude values. */ static /*short*/int[] _dqlntab={-2048, 4, 135, 213, 273, 323, 373, 425, 425, 373, 323, 273, 213, 135, 4, -2048}; /* Maps G726_32 code word to log of scale factor multiplier. */ static /*short*/int[] _witab={-12, 18, 41, 64, 112, 198, 355, 1122, 1122, 355, 198, 112, 64, 41, 18, -12}; /* * Maps G726_32 code words to a set of values whose long and short * term averages are computed and then compared to give an indication * how stationary (steady state) the signal is. */ static /*short*/int[] _fitab={0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00, 0xE00, 0x600, 0x200, 0x200, 0x200, 0, 0, 0}; /** Encodes the input vale of linear PCM, A-law or u-law data sl and returns * the resulting code. -1 is returned for unknown input coding value. */ public static int encode(int sl, int in_coding, G726State state) { /*short*/int sezi, se, sez; /* ACCUM */ /*short*/int d; /* SUBTA */ /*short*/int sr; /* ADDB */ /*short*/int y; /* MIX */ /*short*/int dqsez; /* ADDC */ /*short*/int dq, i; switch (in_coding) { /* linearize input sample to 14-bit PCM */ case AUDIO_ENCODING_ALAW: sl= G711Codec.alaw2linear((byte)sl) >> 2; break; case AUDIO_ENCODING_ULAW: sl= G711UCodec.ulaw2linear((byte)sl) >> 2; break; case AUDIO_ENCODING_LINEAR: sl >>= 2; /* 14-bit dynamic range */ break; default: return -1; } sezi=state.predictor_zero(); sez=sezi >> 1; se=(sezi+state.predictor_pole()) >> 1; /* estimated signal */ d=sl-se; /* estimation difference */ /* quantize the prediction difference */ y=state.step_size(); /* quantizer step size */ i=quantize(d, y, qtab_721, 7); /* i=ADPCM code */ dq=reconstruct(i & 8, _dqlntab[i], y); /* quantized est diff */ sr=(dq<0)? se-(dq & 0x3FFF) : se+dq; /* reconst. signal */ dqsez=sr+sez-se; /* pole prediction diff. */ update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state); return i; } /** Decodes a 4-bit code of G726_32 encoded data of i and * returns the resulting linear PCM, A-law or u-law value. * return -1 for unknown out_coding value. */ public static int decode(int i, int out_coding, G726State state) { /*short*/int sezi, sei, sez, se; /* ACCUM */ /*short*/int y; /* MIX */ /*short*/int sr; /* ADDB */ /*short*/int dq; /*short*/int dqsez; i &= 0x0f; /* mask to get proper bits */ sezi=state.predictor_zero(); sez=sezi >> 1; sei=sezi+state.predictor_pole(); se=sei >> 1; /* se=estimated signal */ y=state.step_size(); /* dynamic quantizer step size */ dq=reconstruct(i & 0x08, _dqlntab[i], y); /* quantized diff. */ sr=(dq<0)? (se-(dq & 0x3FFF)) : se+dq; /* reconst. signal */ dqsez=sr-se+sez; /* pole prediction diff. */ update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state); switch (out_coding) { case AUDIO_ENCODING_ALAW: return (tandem_adjust_alaw(sr, se, y, i, 8, qtab_721)); case AUDIO_ENCODING_ULAW: return (tandem_adjust_ulaw(sr, se, y, i, 8, qtab_721)); case AUDIO_ENCODING_LINEAR: return (sr << 2); /* sr was 14-bit dynamic range */ default: return -1; } } /** Encodes the input chunk in_buff of linear PCM, A-law or u-law data and returns * the G726_32 encoded chuck into out_buff.
* It returns the actual size of the output data, or -1 in case of unknown * in_coding value. */ public static int encode(byte[] in_buff, int in_offset, int in_len, int in_coding, byte[] out_buff, int out_offset, G726State state) { if (in_coding==AUDIO_ENCODING_ALAW || in_coding==AUDIO_ENCODING_ULAW) { /* for (int i=0; i * It returns the actual size of the output data, or -1 in case of unknown * out_coding value. */ public static int decode(byte[] in_buff, int in_offset, int in_len, int out_coding, byte[] out_buff, int out_offset, G726State state) { if (out_coding==AUDIO_ENCODING_ALAW || out_coding==AUDIO_ENCODING_ULAW) { /* for (int i=0; i>=4; else in_value%=0x10; int out_value=decode(in_value,out_coding,state); out_buff[out_offset+i]=(byte)out_value; } return in_len*2; */ for (int i=0; i>4,out_coding,state); int out_value2=decode(in_value&0xF,out_coding,state); int out_index=out_offset+i*2; out_buff[out_index]=(byte)out_value1; out_buff[out_index+1]=(byte)out_value2; } return in_len*2; } else if (out_coding==AUDIO_ENCODING_LINEAR) { for (int i=0; i>4,AUDIO_ENCODING_ULAW,state)); //int out_value2=G711.ulaw2linear(decode(in_value&0xF,AUDIO_ENCODING_ULAW,state)); int out_value1=decode(in_value>>4,out_coding,state); int out_value2=decode(in_value&0xF,out_coding,state); int out_index=out_offset+i*4; out_buff[out_index]=(byte)(out_value1&0xFF); out_buff[out_index+1]=(byte)(out_value1>>8); out_buff[out_index+2]=(byte)(out_value2&0xFF); out_buff[out_index+3]=(byte)(out_value2>>8); } return in_len*4; } else return -1; } // ************************* NON-STATIC ************************* /** Creates a new G726_32 processor, that can be used to encode from or decode do PCM audio data. */ public G726_32() { super(32000); } /** Encodes the input vale of linear PCM, A-law or u-law data sl and returns * the resulting code. -1 is returned for unknown input coding value. */ public int encode(int sl, int in_coding) { return encode(sl,in_coding,state); } /** Encodes the input chunk in_buff of linear PCM, A-law or u-law data and returns * the G726_32 encoded chuck into out_buff.
* It returns the actual size of the output data, or -1 in case of unknown * in_coding value. */ public int encode(byte[] in_buff, int in_offset, int in_len, int in_coding, byte[] out_buff, int out_offset) { return encode(in_buff,in_offset,in_len,in_coding,out_buff,out_offset,state); } /** Decodes a 4-bit code of G726_32 encoded data of i and * returns the resulting linear PCM, A-law or u-law value. * return -1 for unknown out_coding value. */ public int decode(int i, int out_coding) { return decode(i,out_coding,state); } /** Decodes the input chunk in_buff of G726_32 encoded data and returns * the linear PCM, A-law or u-law chunk into out_buff.
* It returns the actual size of the output data, or -1 in case of unknown * out_coding value. */ public int decode(byte[] in_buff, int in_offset, int in_len, int out_coding, byte[] out_buff, int out_offset) { return decode(in_buff,in_offset,in_len,out_coding,out_buff,out_offset,state); } }