package cn.org.hentai.jtt1078.codec.g726; import cn.org.hentai.jtt1078.codec.G711Codec; import cn.org.hentai.jtt1078.codec.G711UCodec; /** G726_40 encoder and decoder. *

* These routines comprise an implementation of the CCITT G.726 40kbps * ADPCM coding algorithm. Essentially, this implementation is identical to * the bit level description except for a few deviations which * take advantage of workstation attributes, such as hardware 2's * complement arithmetic. *

* The deviation from the bit level specification (lookup tables), * preserves the bit level performance specifications. *

* As outlined in the G.723 Recommendation, the algorithm is broken * down into modules. Each section of code below is preceded by * the name of the module which it is implementing. *

* This implementation is based on the ANSI-C language reference implementations * of the CCITT (International Telegraph and Telephone Consultative Committee) * G.711, G.721 and G.723 voice compressions, provided by Sun Microsystems, Inc. *

* Acknowledgement to Sun Microsystems, Inc. for having released the original * ANSI-C source code to the public domain. */ public class G726_40 extends G726 { // ##### C-to-Java conversion: ##### // short becomes int // char becomes int // unsigned char becomes int // *************************** STATIC *************************** /* * Maps G723_40 code word to ructeconstructed scale factor normalized log * magnitude values. */ static /*short*/int[] _dqlntab={-2048, -66, 28, 104, 169, 224, 274, 318, 358, 395, 429, 459, 488, 514, 539, 566, 566, 539, 514, 488, 459, 429, 395, 358, 318, 274, 224, 169, 104, 28, -66, -2048}; /* Maps G723_40 code word to log of scale factor multiplier. */ static /*short*/int[] _witab={448, 448, 768, 1248, 1280, 1312, 1856, 3200, 4512, 5728, 7008, 8960, 11456, 14080, 16928, 22272, 22272, 16928, 14080, 11456, 8960, 7008, 5728, 4512, 3200, 1856, 1312, 1280, 1248, 768, 448, 448}; /* * Maps G723_40 code words to a set of values whose long and short * term averages are computed and then compared to give an indication * how stationary (steady state) the signal is. */ static /*short*/int[] _fitab={0, 0, 0, 0, 0, 0x200, 0x200, 0x200, 0x200, 0x200, 0x400, 0x600, 0x800, 0xA00, 0xC00, 0xC00, 0xC00, 0xC00, 0xA00, 0x800, 0x600, 0x400, 0x200, 0x200, 0x200, 0x200, 0x200, 0, 0, 0, 0, 0}; static /*short*/int[] qtab_723_40={-122, -16, 68, 139, 198, 250, 298, 339, 378, 413, 445, 475, 502, 528, 553}; /** Encodes a 16-bit linear PCM, A-law or u-law input sample and retuens * the resulting 5-bit CCITT G726 40kbps code. * Returns -1 if the input coding value is invalid. */ public static int encode(int sl, int in_coding, G726State state) { /*short*/int sei, sezi, se, sez; /* ACCUM */ /*short*/int d; /* SUBTA */ /*short*/int y; /* MIX */ /*short*/int sr; /* ADDB */ /*short*/int dqsez; /* ADDC */ /*short*/int dq, i; switch (in_coding) { /* linearize input sample to 14-bit PCM */ case AUDIO_ENCODING_ALAW: sl= G711Codec.alaw2linear((byte) sl) >> 2; break; case AUDIO_ENCODING_ULAW: sl= G711UCodec.ulaw2linear((byte)sl) >> 2; break; case AUDIO_ENCODING_LINEAR: sl >>= 2; /* sl of 14-bit dynamic range */ break; default: return (-1); } sezi=state.predictor_zero(); sez=sezi >> 1; sei=sezi+state.predictor_pole(); se=sei >> 1; /* se=estimated signal */ d=sl-se; /* d=estimation difference */ /* quantize prediction difference */ y=state.step_size(); /* adaptive quantizer step size */ i=quantize(d, y, qtab_723_40, 15); /* i=ADPCM code */ dq=reconstruct(i & 0x10, _dqlntab[i], y); /* quantized diff */ sr=(dq<0)? se-(dq & 0x7FFF) : se+dq; /* reconstructed signal */ dqsez=sr+sez-se; /* dqsez=pole prediction diff. */ update(5, y, _witab[i], _fitab[i], dq, sr, dqsez, state); return (i); } /** Decodes a 5-bit CCITT G.726 40kbps code and returns * the resulting 16-bit linear PCM, A-law or u-law sample value. * -1 is returned if the output coding is unknown. */ public static int decode(int i, int out_coding, G726State state) { /*short*/int sezi, sei, sez, se; /* ACCUM */ /*short*/int y, dif; /* MIX */ /*short*/int sr; /* ADDB */ /*short*/int dq; /*short*/int dqsez; i &= 0x1f; /* mask to get proper bits */ sezi=state.predictor_zero(); sez=sezi >> 1; sei=sezi+state.predictor_pole(); se=sei >> 1; /* se=estimated signal */ y=state.step_size(); /* adaptive quantizer step size */ dq=reconstruct(i & 0x10, _dqlntab[i], y); /* estimation diff. */ sr=(dq<0)? (se-(dq & 0x7FFF)) : (se+dq); /* reconst. signal */ dqsez=sr-se+sez; /* pole prediction diff. */ update(5, y, _witab[i], _fitab[i], dq, sr, dqsez, state); switch (out_coding) { case AUDIO_ENCODING_ALAW: return (tandem_adjust_alaw(sr, se, y, i, 0x10, qtab_723_40)); case AUDIO_ENCODING_ULAW: return (tandem_adjust_ulaw(sr, se, y, i, 0x10, qtab_723_40)); case AUDIO_ENCODING_LINEAR: return (sr << 2); /* sr was of 14-bit dynamic range */ default: return (-1); } } /** Encodes the input chunk in_buff of linear PCM, A-law or u-law data and returns * the G726_40 encoded chuck into out_buff.
* It returns the actual size of the output data, or -1 in case of unknown * in_coding value. */ public static int encode(byte[] in_buff, int in_offset, int in_len, int in_coding, byte[] out_buff, int out_offset, G726State state) { if (in_coding==AUDIO_ENCODING_ALAW || in_coding==AUDIO_ENCODING_ULAW) { int len_div_8=in_len/8; for (int i=0; i>(8*(4-k))); } } return len_div_8*5; } else if (in_coding==AUDIO_ENCODING_LINEAR) { int len_div_16=in_len/16; for (int i=0; i>(8*(4-k))); } } return len_div_16*5; } else return -1; } /** Decodes the input chunk in_buff of G726_40 encoded data and returns * the linear PCM, A-law or u-law chunk into out_buff.
* It returns the actual size of the output data, or -1 in case of unknown * out_coding value. */ public static int decode(byte[] in_buff, int in_offset, int in_len, int out_coding, byte[] out_buff, int out_offset, G726State state) { if (out_coding==AUDIO_ENCODING_ALAW || out_coding==AUDIO_ENCODING_ULAW) { int len_div_5=in_len/5; for (int i=0; i>(5*(7-k)))&0x1F); int out_value=decode(in_value,out_coding,state); out_buff[out_index+k]=(byte)out_value; } } return len_div_5*8; } else if (out_coding==AUDIO_ENCODING_LINEAR) { int len_div_5=in_len/5; for (int i=0; i>(5*(7-k)))&0x1F); int out_value=decode(in_value,out_coding,state); out_buff[out_index+k2]=(byte)(out_value&0xFF); out_buff[out_index+k2+1]=(byte)(out_value>>8); } } return len_div_5*16; } else return -1; } // ************************* NON-STATIC ************************* /** Creates a new G726_40 processor, that can be used to encode from or decode do PCM audio data. */ public G726_40() { super(40000); } /** Encodes a 16-bit linear PCM, A-law or u-law input sample and retuens * the resulting 5-bit CCITT G.726 40kbps code. * Returns -1 if the input coding value is invalid. */ public int encode(int sl, int in_coding) { return encode(sl,in_coding,state); } /** Encodes the input chunk in_buff of linear PCM, A-law or u-law data and returns * the G726_40 encoded chuck into out_buff.
* It returns the actual size of the output data, or -1 in case of unknown * in_coding value. */ public int encode(byte[] in_buff, int in_offset, int in_len, int in_coding, byte[] out_buff, int out_offset) { return encode(in_buff,in_offset,in_len,in_coding,out_buff,out_offset,state); } /** Decodes a 5-bit CCITT G.726 40kbps code and returns * the resulting 16-bit linear PCM, A-law or u-law sample value. * -1 is returned if the output coding is unknown. */ public int decode(int i, int out_coding) { return decode(i,out_coding,state); } /** Decodes the input chunk in_buff of G726_40 encoded data and returns * the linear PCM, A-law or u-law chunk into out_buff.
* It returns the actual size of the output data, or -1 in case of unknown * out_coding value. */ public int decode(byte[] in_buff, int in_offset, int in_len, int out_coding, byte[] out_buff, int out_offset) { return decode(in_buff,in_offset,in_len,out_coding,out_buff,out_offset,state); } }